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6.1 The distribution function of Y is ∫ −=−=
y

Y yydttyF
0

22)1(2)( , 0 ≤ y ≤ 1. 
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  Thus, 
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e. .6/1)(,3/1)21(,3/1)12( 2 ==−−=− YEYEYE  

 

6.2 The distribution function of Y is ∫
−

−==
y

Y ydttyF
1

32 )1)(2/1()2/3()( , –1 ≤ y ≤ 1. 
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6.3 The distribution function for Y is 
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b. E(U) = 5.583. 
c. E(10Y – 4) = 10(23/24) – 4 = 5.583. 
 

6.4 The distribution function of Y is 4/1)( y
Y eyF −−= , 0 ≤ y. 

a. 12/)1(
3

1
3

1 1)()()13()()( −−−− −==≤=≤+=≤= uu
Y

u
U eFYPuYPuUPuF .  Thus, 

1,)()( 12/)1(
12
1 ≥=′= −− ueuFuf u

UU . 
b. E(U) = 13. 
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6.5 The distribution function of Y is 4/)( yyFY = , 1 ≤ y ≤ 5.  

2
3

4
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2
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2
32 )()()32()()( −−− ==≤=≤+=≤= uu

Y
u

U FYPuYPuUPuF .  Differentiating, 
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3
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UU . 
 
6.6 Refer to Ex. 5.10 ad 5.78.  Define )()()()( 2121 uYYPuYYPuUPuFU +≤=≤−=≤= . 

a. For u ≤ 0, 0)()()( 21 =≤−=≤= uYYPuUPuFU .   

For 0 ≤ u < 1, ∫ ∫ ==≤−=≤=
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For 1 ≤ u ≤ 2, ∫ ∫
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b.  E(U) = 1. 
 
6.7 Let FZ(z) and fZ(z) denote the standard normal distribution and density functions 

respectively. 
a. ).()()()()()( 2 uFuFuZuPuZPuUPuF ZZU −−=≤≤−=≤=≤=   The 

density function for U is then  
0),()()()()( 1

2
1

2
1 ≥=−+=′= uufufufuFuf ZuZuZuUU . 

Evaluating, we find 0)( 2/2/1
2

1 ≥= −−
π

ueuuf u
U . 

b. U has a gamma distribution with α = 1/2 and β = 2 (recall that Γ(1/2) = π ). 
c. This is the chi–square distribution with one degree of freedom. 

 
6.8 Let FY(y) and fY(y) denote the beta distribution and density functions respectively. 

a. ).1(1)1()1()()( uFuYPuYPuUPuF YU −−=−≥=≤−=≤=   The density function 
for U is then 10,)1()1()()( 11

)()(
)( ≤≤−=−=′= −α−β
βΓαΓ
β+αΓ uuuufuFuf YUU . 

b. E(U) = 1 – E(Y) = β+α
β . 

c. V(U) = V(Y). 
 

6.9 Note that this is the same density from Ex. 5.12: 2),( 21 =yyf , 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1,  
0 ≤ y1 + y2 ≤ 1. 

a.  2

0 0
212121

2

2)()()()( udydyYuYPuYYPuUPuF
u yu

U ==−≤=≤+=≤= ∫ ∫
−

.  Thus, 

uuFuf UU 2)()( =′= , 0 ≤ u ≤ 1. 
b.  E(U) = 2/3. 
 
c. (found in an earlier exercise in Chapter 5) E(Y1 + Y2) = 2/3. 
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6.10 Refer to Ex. 5.15 and Ex. 5.108. 

a. u
yu

y

y
U edydyeYuYPuYYPuUPuF −

∞ +
− −==+≤=≤−=≤= ∫ ∫ 1)()()()(

0
212121
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1 , so that 

u
UU euFuf −=′= )()( , u ≥ 0, so that U has an exponential distribution with β = 1. 

b. From part a above, E(U) = 1. 
 
6.11 It is given that fi(yi) = iye− , yi ≥ 0 for i = 1, 2.  Let U = (Y1 + Y2)/2. 

a. ,21)2()()()( 22
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so that u
UU ueuFuf 24)()( −=′= , u ≥ 0, a gamma density with α = 2 and β = 1/2. 

b. From part (a), E(U) = 1, V(U) = 1/2. 
 
6.12 Let FY(y) and fY(y) denote the gamma distribution and density functions respectively. 

a. )/()()()( cuYPucYPuUPuFU ≤=≤=≤= .  The density function for U is then 
0,)/()()( /1

))((
11 ≥==′= β−−α
βαΓ α ueucufuFuf cu

cYcUU .  Note that this is another 

gamma distribution. 
b. The shape parameter is the same (α), but the scale parameter is cβ. 
 
 

6.13 Refer to Ex. 5.8; 
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6.14 Since Y1 and Y2 are independent, so 2

2
2
1121 )(18),( yyyyyf −= , for 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1.  

Let U = Y1Y2.  Then,  
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           = 9u2 – 8u3 + 6u3lnu. 
)ln1(18)()( uuuuuFuf UU +−=′= , 0 ≤ u ≤ 1. 

 
 

6.15 Let U have a uniform distribution on (0, 1).  The distribution function for U is  
uuUPuFU =≤= )()( , 0 ≤ u ≤ 1.  For a function G, we require G(U) = Y where Y has 

distribution function FY(y) = 
2

1 ye−− , y ≥ 0.  Note that 
FY(y) = P(Y ≤ y) = )]([)]([))(( 11 yGFyGUPyUGP U

−− =≤=≤ = u. 

So it must be true that =− )(1 yG
2

1 ye−− = u so that G(u) = [–ln(1– u)]–1/2.  Therefore, the 
random variable Y = [–ln(U – 1)]–1/2 has distribution function FY(y). 
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6.16 Similar to Ex. 6.15.  The distribution function for Y is .,1)( 2 bydttbyF y
b

y

b
Y ≥−== ∫ −   

FY(y) = P(Y ≤ y) = )]([)]([))(( 11 yGFyGUPyUGP U
−− =≤=≤ = u. 

So it must be true that =− )(1 yG y
b−1 = u so that G(u) = u

b
−1 .  Therefore, the random 

variable Y = b/(1 – U) has distribution function FY(y). 
 
6.17 a. Taking the derivative of F(y), α

−α

θ
α=

1

)( yyf , 0 ≤ y ≤ θ. 

b. Following Ex. 6.15 and 6.16, let u = ( )αθ
y  so that y = θu1/α.  Thus, the random variable 

Y = θU1/α has distribution function FY(y). 
c. From part (b), the transformation is y = 4 u .  The values are 2.0785, 3.229, 1.5036, 
1.5610, 2.403. 
 

6.18 a. Taking the derivative of the distribution function yields 1)( −α−ααβ= yyf , y ≥ β. 

b. Following Ex. 6.15, let ( )αβ−= yu 1  so that α−
β= /1)1( u

y .  Thus, α−−β= /1)1( UY . 

c. From part (b), y = 3 u−1/ .  The values are 3.0087, 3.3642, 6.2446, 3.4583, 4.7904. 
 

6.19 The distribution function for X is: 
     FX(x) = P(X ≤ x) = P(1/Y ≤ x) = P(Y ≥ 1/x) = 1 – FY(1/x) 
              = 1 – ( )[ ] ( )αα β=β− xx1 , 0 < x < β–1, which is a power distribution with θ = β–1. 

 
6.20 a. ,)()()()()( 2 wwFwYPwYPwWPwF YW ==≤=≤+≤=  0 ≤ w ≤ 1. 

b. ,)()()()()( 222 wwFwYPwYPwWPwF YW ==≤=≤+≤= 0 ≤ w ≤ 1. 
 
6.21 By definition, P(X = i) = P[F(i – 1) < U ≤ F(i)] = F(i) – F(i – 1), for i = 1, 2, …, since for 

any 0 ≤ a ≤ 1, P(U ≤ a) = a for any 0 ≤ a ≤ 1.  From Ex. 4.5, P(Y = i) = F(i) – F(i – 1), for 
i = 1, 2, … .  Thus, X and Y have the same distribution. 

 
6.22 Let U have a uniform distribution on the interval (0, 1).  For a geometric distribution with 

parameter p and distribution function F, define the random variable X as: 
X = k if and only if F(k – 1) < U ≤ F(k), k = 1, 2, … . 

Or since F(k) = 1 – qk, we have that: 
X = k if and only if 1 – qk–1 < U ≤ 1 – qk,  OR 
X = k if and only if qk, < 1–U ≤ qk–1,  OR 
X = k if and only if klnq ≤ ln(1–U) ≤ (k–1)lnq,  OR 
X = k if and only if k–1 < [ln(1–U)]/lnq ≤ k. 
 

6.23 a. If U = 2Y – 1, then Y = 2
1+U .  Thus, 2
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6.24 If U = 3Y + 1, then Y = 3

1−U .  Thus, 3
1=du

dy .  With 4/
4
1)( y

Y eyf −= , we have that 
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6.25 Refer to Ex. 6.11.  The variable of interest is U = 2

21 YY + .  Fix Y2 = y2.  Then, Y1 = 2u – y2 

and 21 =du
dy .  The joint density of U and Y2 is g(u, y2) = 2e–2u, u ≥ 0, y2 ≥ 0, and y2 < 2u.  

Thus, u
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6.26 a. Using the transformation approach, Y = U1/m so that mm

mdu
dy u /)1(1 −−=  so that the density 

function for U is α−
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U euf , u ≥ 0.  Note that this is the exponential distribution 
with mean α. 
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6.27 a. Let W= Y .  The random variable Y is exponential so β−

β= /1)( y
Y eyf .  Then, Y = W2 

and wdw
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b. It follows from Ex. 6.26 that E(Yk/2) = ( ) 2/
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The above expression is in the form of a gamma density, so the constant a must be 
chosen so that the density integrate to 1, or simply 
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So, the density function for W is 
kTw
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b. For a gamma random variable, E(W) = kT2
3 . 

 
6.30 The density function for I is 2/1)( =if I , 9 ≤ i ≤ 11.  For P = 2I2, I = 2/P  and 

2/12/3)2/1( −= pdp
di .  Then, 

pp pf
24
1)( = , 162 ≤ p ≤ 242. 
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6.31 Similar to Ex. 6.25.  Fix Y1 = y1.  Then, U = Y2/y1, Y2 = y1U and 1|| 2 ydu

dy = .  The joint 
density of Y1 and U is 2/)1(2

18
1

1
1),( uyeyuyf +−= , y1 ≥ 0, u ≥ 0.  So, the marginal 

density for U is 3
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6.32 Now fY(y) = 1/4, 1 ≤ y ≤ 5.  If U = 2Y2 + 3, then Y = ( ) 2/1

2
3−U  and ( )
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6.33 If U = 5 – (Y/2), Y = 2(5 – U).  Thus, 2|| =du

dy  and )33180(4)( 2uuufU +−= , 4.5 ≤ u ≤ 5. 
 
6.34 a. If U = Y2, Y = U .  Thus, 
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2
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θ= /1)( u
U euf , u ≥ 0.  This is the 

exponential density with mean θ. 
 

b. From part a, E(Y) = E(U1/2) = 2
πθ .  Also, E(Y2) = E(U) = θ, so V(Y) = ]1[ 4

π−θ . 
 

6.35 By independence, 1),( 21 =yyf , 0 ≤ y1 ≤ 0, 0 ≤ y2 ≤ 1.  Let U = Y1Y2.  For a fixed value 
of Y1 at y1, then y2 = u/y1.  So that 
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6.36 By independence, )(4
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2
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Then, θ−
θ

θ−
θ

== ∫ /1
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u
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U uedyeyuf .  Thus, U has a gamma distribution with α = 2. 

 
6.37 The mass function for the Bernoulli distribution is yy ppyp −−= 1)1()( , y = 0, 1. 
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c. Since the mgf for W is in the form of a binomial mgf with n trials and success 
probability p, this is the distribution for W. 
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6.38 Let Y1 and Y2 have mgfs as given, and let U = a1Y1 + a2Y2.  The mdf for U is 

)()()()()()()( 21
)()()(

21

22112211 tamtameEeEeEeEtm YY
YtaYtatYaYaUt

U ==== + . 
 

6.39 The mgf for the exponential distribution with β = 1 is 1)1()( −−= ttm , t < 1.  Thus, with 
Y1 and Y2 each having this distribution and U = (Y1 + Y2)/2.  Using the result from Ex. 
6.38, let a1 = a2 = 1/2 so the mgf for U is .)2/1()2/()2/()( 2−−== ttmtmtmU   Note that 
this is the mgf for a gamma random variable with α = 2, β = 1/2, so the density function 
for U is 0,4)( 2 ≥= − uueuf u

U . 
 

6.40 It has been shown that the distribution of both 2
1Y  and 2

2Y is chi–square with ν = 1.  Thus, 
both have mgf 2/1)21()( −−= ttm , t < 1/2.  With U = 2

1Y  + 2
2Y , use the result from Ex. 

6.38 with a1 = a2 = 1 so that .)21()()()( 1−−== ttmtmtmU   Note that this is the mgf for a 
exponential random variable with β = 2, so the density function for U is 

0,)( 2/
2
1 ≥= − ueuf u

U  (this is also the chi–square distribution with ν = 2.) 
 
6.41 (Special case of Theorem 6.3)  The mgf for the normal distribution with parameters μ and 

σ is 2/22

)( ttetm σ+μ= .  Since the Yi’s are independent, the mgf for U is given by 

[ ]∑∑∏∏ σ+μ====
==

ii i

n

i
i

n

i

tYaUt
U i

ii atattameEeEtm 222

11
)2/(exp)()()()( . 

This is the mgf for a normal variable with mean ∑μ i i
a  and variance ∑σ

i i
a 22 . 

 
6.42 The probability of interest is P(Y2 > Y1) = P(Y2 – Y1 > 0).  By Theorem 6.3, the 

distribution of Y2 – Y1 is normal with μ = 4000 – 5000 = –1000 and σ2 = 4002 + 3002 = 
250,000.  Thus, P(Y2 – Y1 > 0) = P(Z > 

000,250
)1000(0 −− ) = P(Z > 2) = .0228. 

 
6.43 a. From Ex. 6.41, Y  has a normal distribution with mean μ and variance σ2/n. 
 

b. For the given values, Y  has a normal distribution with variance σ2/n = 16/25.  Thus, 
the standard deviation is 4/5 so that  

P(|Y –μ| ≤ 1) = P(–1 ≤ Y –μ ≤ 1) = P(–1.25 ≤ Z ≤ 1.25) = .7888. 
 

c. Similar to the above, the probabilities are .8664, .9544, .9756.  So, as the sample size 
increases, so does the probability that P(|Y –μ| ≤ 1). 

 
6.44 The total weight of the watermelons in the packing container is given by ∑=

=
n

i iYU
1

, so 
by Theorem 6.3 U has a normal distribution with mean 15n and variance 4n.  We require 
that )()140(05. 4

15140
n

nZPUP −>=>= .  Thus, 
n

n
4
15140−  = z.05= 1.645.  Solving this 

nonlinear expression for n, we see that n ≈ 8.687.  Therefore, the maximum number of 
watermelons that should be put in the container is 8 (note that with this value n, we have 
P(U > 140) = .0002). 
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6.45 By Theorem 6.3 we have that U = 100 +7Y1 + 3Y2 is a normal random variable with mean 

μ = 100 + 7(10) + 3(4) = 182 and variance σ2 = 49(.5)2 + 9(.2)2 = 12.61.  We require a 
value c such that P(U > c) = P( 61.12

182−> cZ ).  So, 61.12
182−c  = 2.33 and c = $190.27. 

 
6.46 The mgf for W is 2/)/2( )21()/2()()()( n

Y
tYWt

W ttmeEeEtm −β −=β=== .  This is the mgf 
for a chi–square variable with n degrees of freedom. 

 
6.47 By Ex. 6.46, U = 2Y/4.2 has a chi–square distribution with ν = 7.  So, by Table III, 

P(Y > 33.627) = P(U > 2(33.627)/4.2) = P(U > 16.0128) = .025. 
 

6.48 From Ex. 6.40, we know that V = 2
1Y  + 2

2Y  has a chi–square distribution with ν = 2.  The 
density function for V is 2/

2
1)( v

V evf −= , v ≥ 0.  The distribution function of U = V  is 

)()()()( 22 uFuVPuUPuF VU =≤=≤= , so that 2/2

)()( u
UU ueuFuf −=′= , u ≥ 0.  A sharp 

observer would note that this is a Weibull density with shape parameter 2 and scale 2. 
 

6.49 The mgfs for Y1 and Y2 are, respectively, 1

1
]1[)( nt

Y peptm +−= , 2

2
]1[)( nt

Y peptm +−= . 

Since Y1 and Y2 are independent, the mgf for Y1 + Y2 is 21

21
]1[)()( nnt

YY peptmtm ++−=× .  
This is the mgf of a binomial with n1 + n2 trials and success probability p. 

 
6.50 The mgf for Y is nt

Y peptm ]1[)( +−= .  Now, define X = n –Y.  The mgf for X is 
nt

Y
tnYnttX

X epptmeeEeEtm ])1([)()()()( )( −+=−=== − . 
This is an mgf for a binomial with n trials and “success” probability (1 – p).  Note that the 
random variable X = # of failures observed in the experiment. 

 
6.51 From Ex. 6.50, the distribution of n2 – Y2 is binomial with n2 trials and “success” 

probability 1 – .8 = .2.  Thus, by Ex. 6.49, the distribution of Y1 + (n2 – Y2) is binomial 
with n1 + n2 trials and success probability p = .2. 

 
6.52 The mgfs for Y1 and Y2 are, respectively, )1(1

1
)( −λ=

te
Y etm , )1(2

2
)( −λ=

te
Y etm .   

a. Since Y1 and Y2 are independent, the mgf for Y1 + Y2 is )1)(( 21

21
)()( −λ+λ=×

te
YY etmtm .  

This is the mgf of a Poisson with mean λ1 + λ2. 
b. From Ex. 5.39, the distribution is binomial with m trials and p = 

21

1
λ+λ

λ . 
 
6.53 The mgf for a binomial variable Yi with ni trials and success probability pi is given by 

i

i

nt
iiY epptm ]1[)( +−= .  Thus, the mgf for ∑=

=
n

i iYU
1 ∏ +−=

i
nt

iiU
iepptm ]1[)(is . 

a. Let pi = p and ni = m for all i.  Here, U is binomial with m(n) trials and success 
probability p. 

b. Let pi = p.  Here, U is binomial with ∑=

n

i in
1

trials and success probability p. 

c. (Similar to Ex. 5.40) The cond. distribution is hypergeometric w/ r = ni, N = ∑ in . 
d. By definition, 
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)|(
121 ∑=

=+
n

i iYkYYP = )(
),( 21

mYP
mYkYYP

i

i
=∑

=∑=+ = )(
),(

321

mYP
kmYkYYP

i

n

i i

=∑

−==+ ∑ = = )(
)()(

321

mYP
kmYPkYYP

i

n

i i

=∑

−==+ ∑ =  
 

        = 
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +

∑

∑

=

=

m
n

km
n

k
nn

n

i i

n

i i

1

3
21

, which is hypergeometric with r = n1 + n2. 

 
e. No, the mgf for U does not simplify into a recognizable form. 
 

6.54 a. The mgf for U = ∑=
λ−

=∑ i i
te

U
n

i i etmY )1(

1
)(is , which is recognized as the mgf for a 

Poisson w/ mean ii
λ∑ . 

b. This is similar to 6.52.  The distribution is binomial with m trials and p = ∑λ
λ

i

1 . 

 
c. Following the same steps as in part d of Ex. 6.53, it is easily shown that the conditional 
distribution is binomial with m trials and success probability ∑λ

λ+λ

i

21 . 

 
6.55 Let Y = Y1 + Y2.  Then, by Ex. 6.52, Y is Poisson with mean 7 + 7 = 14.  Thus, 

P(Y ≥ 20) = 1 – P(Y ≤ 19) = .077. 
 

6.56 Let U = total service time for two cars.  Similar to Ex. 6.13, U has a gamma distribution 

with α = 2, β = 1/2.  Then, P(U > 1.5) = duue u∫
∞

−

5.1

24  = .1991. 

 
6.57 For each Yi, the mgf is i

i
ttmY

α−β−= )1()( , t < 1/β.  Since the Yi are independent, the mgf 

for U = ∑=

n

i iY
1

is ∑β−=β−= =
α−α−∏

n

i ii tttmU
1)1()1()( . 

This is the mgf for the gamma with shape parameter ∑=
α

n

i i1
 and scale parameter β. 

 

6.58 a. The mgf for each Wi is 
)1(

)( t

t

qe
petm
−

= .  The mgf for Y is ( )r
qe

per
t

t

tm
−

=
1

)]([ , which is the 

mgf for the negative binomial distribution. 
 

b. Differentiating with respect to t, we have 
( ) p

r
tqe

per

qe
pe

t t

t

t

t

rtm =×=′ =−

−

−= 0)1(

1

10 2)(  = E(Y). 

    Taking another derivative with respect to t yields 
 

2

2

)1(2

121 )1(
0)1(

)1)()(1()()()1(
0)(

p
qrrpr

tqe
qeqerperpeperqe

t rt

rttrtrttrt

tm ++
=−

−−+−−
= ==′′ +

−+

 = E(Y2). 

 
    Thus, V(Y) = E(Y2) – [E(Y)]2 = rq/p2. 
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c. This is similar to Ex. 6.53.  By definition, 

)|( 1 iWkWP Σ= = )(
),( 1

mWP
mWkWP

i

i
=∑

=∑= = )(
),(

21

mWP
kmWkWP

i

n

i i

=∑

−== ∑ = =
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−−

=∑

−==
=∑ =

1
1
2

1

)(
)()(

21

r
m
r

km

mWP
kmWPkWP

i

n

i i . 

 
6.59 The mgfs for Y1 and Y2 are, respectively, 2/1

1
)21()( ν−−= ttmY , 2/2

2
)21()( ν−−= ttmY .  Thus 

the mgf for U = Y1 + Y2 = mU(t) = 2/)( 21

21
)21()()( ν+ν−−=× ttmtm YY , which is the mgf for a 

chi–square variable with ν1 + ν2 degrees of freedom. 
 
6.60 Note that since Y1 and Y2 are independent, mW(t) = )()(

21
tmtm YY × .  Therefore, it must be 

so that mW(t)/ )()(
21

tmtm YY = .  Given the mgfs for W and Y1, we can solve for )(
2

tmY : 

)(
2

tmY  = 2/)( 1

1
)21(

)21(
)21( ν−ν−
ν−

ν−

−=
−
− t

t
t . 

This is the mgf for a chi–squared variable with ν – ν1 degrees of freedom. 
 

6.61 Similar to Ex. 6.60.  Since Y1 and Y2 are independent, mW(t) = )()(
21

tmtm YY × .  Therefore, 
it must be so that mW(t)/ )()(

21
tmtm YY = .  Given the mgfs for W and Y1,  

)(
2

tmY  = )1)((
)1(

)1(
1

1

−λ−λ

−λ

−λ

=
t

t

t

e
e

e

e
e
e . 

This is the mgf for a Poisson variable with mean λ – λ1. 
 

6.62 )()(]})(){exp[()]}()({exp[ 2121221121212211 21
ttmttmYttYttEYYtYYtE YY ++=+++=−++  

= 2
22

2
12

2
212

2
212 ]exp[]exp[])(exp[])(exp[ 2222 tttttt σσσσ =−+  

= )()( 21 11
tmtm UU . 

 Since the joint mgf factors, U1 and U2 are independent. 
 

6.63 a. The marginal distribution for U1 is 2
/

2
0

1
1

2
21

)( dueuuf u
U

β−
∞

β∫= = 1, 0 < u1 < 1. 

b. The marginal distribution for U2 is β−
β

β−
β

== ∫ /
2

1
1

/
2

1

0

1
2

2
2

2
22

)( uu
U eudueuuf , u2 > 0.  This 

is a gamma density with α = 2 and scale parameter β. 
 
c. Since the joint distribution factors into the product of the two marginal densities, they 
are independent. 
 

6.64 a. By independence, the joint distribution of Y1 and Y2 is the product of the two marginal 
densities: 

β+−−α−α
βαΓαΓ α+α= /)(1

2
1

1)()(
1

21
2121

21
1

),( yyeyyyyf
a

, y1 ≥ 0, y2 ≥ 0. 

With U and V as defined, we have that y1 = u1u2 and y2 = u2(1–u1).  Thus, the Jacobian of 
transformation J = u2 (see Example 6.14).  Thus, the joint density of U1 and U2 is 
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2

/1
12

1
21)()(

1
21

221
21

1
)]1([)(),( ueuuuuuuf u

a

β−−α−α
βαΓαΓ

−= α+α  

   β−−α+α−α−α
βαΓαΓ

−= α+α
/1

2
1

1
1

1)()(
1 22121

21
1

)1( ueuuu
a

, with 0 < u1 < 1, and u2 > 0. 

 

 b. 1
1

1
1)()(

)(/1

0

11
1

1
1)()(

1
1

21

1

121
21

21

11
)1()1()( −α−α

αΓαΓ
α+αΓβ−−α+α

∞

β
−α−α

αΓαΓ −=−= ∫ α+α uudvevuuuf
a

a

a

v
U , with  

0 < u1 < 1.  This is the beta density as defined. 
 

c. β−−α+α

α+αΓβ
−α−α

αΓαΓ
β−−α+α

β α+αα+α =−= ∫ /1
2)(

1
1

1

0

1
1

1
1)()(

1/1
2

1
2

221

21
21

21

1

221
212

)1()( uu
U euduuueuuf

a
, 

with u2 > 0.  This is the gamma density as defined. 
 
d. Since the joint distribution factors into the product of the two marginal densities, they 
are independent. 
 
 

6.65 a. By independence, the joint distribution of Z1 and Z2 is the product of the two marginal 
densities: 

2/)(
2
1

21

2
2

2
1),( zzezzf +−

π= . 
 

With U1 = Z1 and U2 = Z1 + Z2, we have that z1 = u1 and z2 = u2 – u1.  Thus, the Jacobian 
of transformation is 

1
11
01
=

−
=J . 

Thus, the joint density of U1 and U2 is 
2 2 2 2
1 2 1 1 1 2 2[ ( ) ]/ 2 (2 2 ) / 21 1

1 2 2 2( , ) u u u u u u uf u u e eπ π
− + − − − += = . 

 
b. ,1)()(,0)()(,0)()( 1121211 ===+=== ZVUVZZEUEZEUE     
    1)(),(,2)()()()( 2

12121212 ===+=+= ZEUUCovZVZVZZVUV  
 
c. Not independent since ρ ≠ 0. 
 
d. This is the bivariate normal distribution with μ1 = μ2 = 0, 2

1σ  = 1, 2
2σ  = 2, and ρ = 2

1 . 
 
 
6.66 a. Similar to Ex. 6.65, we have that y1 = u1 – u2 and y2 = u2.  So, the Jacobian of 

transformation is 

1
10
11
=

−
=J . 

Thus, by definition the joint density is as given. 
 
b. By definition of a marginal density, the marginal density for U1 is as given. 
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c. If Y1 and Y2 are independent, their joint density factors into the product of the marginal 
densities, so we have the given form. 
 
 

6.67 a. We have that y1 = u1u2 and y2 = u2.  So, the Jacobian of transformation is 

2
12

10
u

uu
J == . 

 
Thus, by definition the joint density is as given. 
 
b. By definition of a marginal density, the marginal density for U1 is as given. 
 
c. If Y1 and Y2 are independent, their joint density factors into the product of the marginal 
densities, so we have the given form. 

 
 
6.68 a. Using the result from Ex. 6.67, 

3
21222121 8)(8),( uuuuuuuuf == , 0 ≤ u1 ≤ 1, 0 ≤ u2 ≤ 1. 

 
b. The marginal density for U1 is 

1

1

0
2

3
211 28)(

1
uduuuufU == ∫ , 0 ≤ u1 ≤ 1. 

    The marginal density for U1 is 
3
2

1

0
1

3
212 48)(

2
uduuuufU == ∫ , 0 ≤ u2 ≤ 1. 

    The joint density factors into the product of the marginal densities, thus independence. 
 
 

6.69 a. The joint density is 2
2

2
1

1
21 ),(

yy
yyf = , y1 > 1, y2 > 1. 

b. We have that y1 = u1u2 and y2 = u2(1 – u1).  The Jacobian of transformation is u2.  So, 
2

1
3
2

2
1 )1(

1
21 ),(

uuu
uuf

−
= , 

    with limits as specified in the problem. 
 
c. The limits may be simplified to: 1/u1 < u2, 0 < u1 < 1/2, or 1/(1–u1) < u2, 1/2 ≤ u1 ≤ 1. 

d. If 0 < u1 < 1/2, then 2
1

1

2
1

3
2

2
11 )1(2

1
2

/1
)1(

1
1 )(

u
u

uuuU duuf
−

∞

−
== ∫ . 

    If 1/2 ≤ u1 ≤ 1, then 2
1

1

2
1

3
2

2
11 2

1
2

)1/(1
)1(

1
1 )(

u
u

uuuU duuf == ∫
∞

−
−

. 

e. Not independent since the joint density does not factor.  Also note that the support is 
not rectangular. 
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6.70 a. Since Y1 and Y2 are independent, their joint density is 1),( 21 =yyf .  The inverse 

transformations are 21
21 uuy +=  and 22

21 uuy −= .  Thus the Jacobian is  

2
1

2
1

2
1

2
1

2
1

=
−

=J , so that  

2
1

21 ),( =uuf , with limits as specified in the problem. 
b. The support is in the shape of a square with corners located (0, 0), (1, 1), (2, 0), (1, –1). 

c. If 0 < u1 < 1, then 122
1

1

1

1

1
)( uduuf

u

u
U == ∫

−

. 

    If 1 ≤ u1 < 2, then 12

2

2
2
1

1 2)(
1

1

1
uduuf

u

u
U −== ∫

−

−

. 

d. If –1 < u2 < 0, then 22

2

2
1

2 1)(
2

2

2
uduuf

u

u
U +== ∫

+

−

. 

    If 0 ≤ u2 < 1, then 22

2

2
1

2 1)(
2

2

2
uduuf

u

u
U −== ∫

−

. 

 
6.71 a. The joint density of Y1 and Y2 is β+−

β
= /)(1

21
21

2),( yyeyyf .  The inverse transformations 

are 
2

21
11 u

uuy +=  and 
2

1
12 u

uy +=  and the Jacobian is 

2
2

1

2
2

1

2

2
2

1

2

2

)1(
)1(1

1
)1(1

u
u

u
u

u

u
u

u
u

J
+
−

+
−

+

++
==  

So, the joint density of U1 and U2 is 
2

2

11
2 )1(

/1
21 ),(

u
uueuuf
+

β−
β

= , u1 > 0, u2 > 0. 

b. Yes, U1 and U2 are independent since the joint density factors and the support is 
rectangular (Theorem 5.5). 
 

6.72 Since the distribution function is F(y) = y for 0 ≤ y ≤ 1, 
a. )1(2)()1( uug −= , 0 ≤ u ≤ 1. 
b. Since the above is a beta density with α = 1 and β = 2, E(U1) = 1/3, V(U1) = 1/18. 
 

6.73 Following Ex. 6.72, 
a. uug 2)()2( = , 0 ≤ u ≤ 1. 
b. Since the above is a beta density with α = 2 and β = 1, E(U2) = 2/3, V(U2) = 1/18. 

 
6.74 Since the distribution function is F(y) = y/θ for 0 ≤ y ≤ θ, 

a. ( )nn yyG θ= /)()( , 0 ≤ y ≤ θ. 

b. nn
nn nyyGyg θ=′= − /)()( 1

)()( , 0 ≤ y ≤ θ. 

c. It is easily shown that E(Y(n)) = θ+1n
n , V(Y(n)) = 

)2()1( 2

2

++
θ

nn
n . 
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6.75 Following Ex. 6.74, the required probability is P(Y(n) < 10) = (10/15)5 = .1317. 
 
6.76 Following Ex. 6.74 with f (y) = 1/θ for 0 ≤ y ≤ θ, 

a. By Theorem 6.5, ( ) ( ) n

knk yy
knk

nknyky
knk

n
k yg

θ
−θ

−−θ

−

θ
−θ−

θ−−

−−

== )(
)!()!1(

!11
)!()!1(

!
)(

1

)( , 0 ≤ y ≤ θ. 

b. E(Y(k)) = ( ) ( ) dydy knyky
knk

n
n
kyy

knk
n

n

knk −

θ

θ

θ+−Γ+Γ
+Γ

+

θ

θ
−θ

−− −= ∫∫
−

1
0

)1()1(
)2(

1
0

)(
)!()!1(

! .  To evaluate this 

integral, apply the transformation z = θ
y  and relate the resulting integral to that of a 

beta density with α = k + 1 and β = n – k + 1.  Thus, E(Y(k)) = θ+1n
k . 

c. Using the same techniques in part b above, it can be shown that 2
)2)(1(

)1(2
)( )( θ= ++

+
nn

kk
kYE  

so that V(Y(k)) = 2
)2()1(

)1(
2 θ

++
+−

nn
kkn . 

d. E(Y(k) – Y(k–1)) = E(Y(k)) – E(Y(k–1)) = θ+1n
k – θ+

−
1
1

n
k  = θ+1

1
n .  Note that this is constant for 

all k, so that the expected order statistics are equally spaced. 
 
6.77 a. Using Theorem 6.5, the joint density of Y(j) and Y(k) is given by 

( ) ( ) ( ) ( )21
11

)!()!1()!1(
!

))(( 1),( θ

−

θ

−−

θθ

−

θ−−−− −−=
knyjkyyjy

knjkj
n

kjkj
kjkjyyg , 0 ≤ yj ≤ yk ≤ θ. 

 
b. Cov(Y(j), Y(k)) = E(Y(j)Y(k)) – E(Y(j))E(Y(k)).  The expectations E(Y(j)) and E(Y(k)) were 
derived in Ex. 6.76.  To find E(Y(j)Y(k)), let u = yj/θ and v = yk/θ and write 

E(Y(j)Y(k)) = ∫ ∫ −−− −−θ
1

0 0

1 )1()(
v

knjkj dudvvvuvuc , 

where )!()!1()!1(
!

knjkj
nc −−−−= .  Now, let w = u/v so u = wv and du = vdw.  Then, the integral is 

[ ][ ]),1()1,2()1()1( 2
1

0

1
1

0

12 jkjBknkBcdwwwduuuc jkjknk −++−+θ=⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
−θ ∫∫ −−−+ . 

Simplifying, this is 2
)2)(1(

)1( θ++
+

nn
jk .  Thus, Cov(Y(j), Y(k)) = 2

)2)(1(
)1( θ++

+
nn

jk – 2
)2()1(

12
)1( 22 θ=θ

++
+−

+ nn
kn

n
jk  . 

 
c. V(Y(k) – Y(j)) = V(Y(k)) + V(Y(j)) – 2Cov(Y(j), Y(k))  

= 2
)2()1(

)1(
2 θ

++
+−

nn
kkn  + 2

)2()1(
)1(

2 θ
++

+−
nn

jjn  – 2
)2()1(

)1(2
2 θ

++
+−
nn

kn  = 2
)2()1(

)1)((
2 θ

++
++−−

nn
kknjk . 

 
6.78 From Ex. 6.76 with θ = 1, knk

knk
nknk

knk
n

k yyyyyg −−
+−ΓΓ

+Γ−−
−− −=−= )1()1()( 1

)1()(
)1(1

)!()!1(
!

)( .  
Since 0 ≤ y ≤ 1, this is the beta density as described. 

 
6.79 The joint density of Y(1) and Y(n) is given by (see Ex. 6.77 with j = 1, k = n),  

( ) ( ) ( ) 2
1

121
1))(1( )()1()1(),( 1 −

θθθθ −−=−−= n
n

nnyy
nn yynnnnyyg n , 0 ≤ y1 ≤ yn ≤ θ. 

Applying the transformation U = Y(1)/Y(n) and V = Y(n), we have that y1 = uv, yn = v and the 
Jacobian of transformation is v.  Thus, 

( ) ( ) 12121 )1()1()()1(),( −−
θ

−
θ −−=−−= nnnnn vunnvuvvnnvuf , 0 ≤ u ≤ 1, 0 ≤ v ≤ θ. 

Since this joint density factors into separate functions of u and v and the support is 
rectangular, thus Y(1)/Y(n) and V = Y(n) are independent. 
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6.80 The density and distribution function for Y are )1(6)( yyyf −= and 32 23)( yyyF −= , 

respectively, for 0 ≤ y ≤ 1. 
a. ( )nn yyyG 32

)( 23)( −= , 0 ≤ y ≤ 1. 

b. ( ) ( ) 1322132
)()( 23)1(6)66(23)()( −−

−−=−−=′=
nn

nn yyynyyyyynyGyg , 0 ≤ y ≤ 1. 
c. Using the above density with n = 2, it is found that E(Y(2))=.6286. 
 

6.81 a. With β−
β= /1)( yeyf  and β−−= /1)( yeyF , y ≥ 0: 

[ ] β−
β

β−
β

−β− == //11/
)1( )( nynyny eeenyg , y ≥ 0. 

This is the exponential density with mean β/n. 
b. With n = 5, β = 2, Y(1) has and exponential distribution with mean .4.  Thus 

P(Y(1) ≤ 3.6) = 91 −− e  = .99988. 
 
 

6.82 Note that the distribution function for the largest order statistic is  
[ ] [ ]nyn

n eyFyG β−−== /
)( 1)()( , y ≥ 0. 

It is easily shown that the median m is given by m = 5.φ  = βln2.  Now, 

P(Y(m) > m) = 1 – P(Y(m) ≤ m) = 1 – [ ]nF )2ln(β  = 1 – (.5)n. 
 
 
6.83 Since F(m) = P(Y ≤ m) = .5, P(Y(m) > m) = 1 – P(Y(n) ≤ m) = 1 – )()( mG n  = 1 – (.5)n.  So, 

the answer holds regardless of the continuous distribution. 
 
6.84 The distribution function for the Weibull is α−−= /1)(

myeyF , y > 0.  Thus, the 
distribution function for Y(1), the smallest order statistic, is given by 

[ ] [ ] α−α− −=−=−−= //
)1( 11)(11)(

mm nynyn eeyFyG , y > 0. 
This is the Weibull distribution function with shape parameter m and scale parameter α/n. 
 
 

6.85 Using Theorem 6.5, the joint density of Y(1) and Y(2) is given by 
2),( 21)2)(1( =yyg , 0 ≤ y1 ≤ y2 ≤ 1. 

Thus, P(2Y(1) < Y(2)) = 
1

1/ 2 1

2 1
0 2

2
y

dy dy∫ ∫ = .5. 

6.86 Using Theorem 6.5 with β−
β= /1)( yeyf  and β−−= /1)( yeyF , y ≥ 0: 

a. ( ) ( ) ( ) ( ) β

+−β−−β−
−−β

−β−−β−
−− −=−= β− 11/1/

)!()!1(
!/1/

)!()!1(
!

)( 11)( / knyky
knk

neknyky
knk

n
k eeeeyg y , y ≥ 0. 

b. ( ) ( ) ( ) β−

β

+−β−−−β−β−−β−
−−−− −−= /11/1//1/

)!()!1()!1(
!

))(( 21),( jkkjj yknyjkyyjy
knjkj

n
kjkj eeeeeyyg ,  

0 ≤ yj ≤ yk < ∞. 
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6.87 For this problem, we need the distribution of Y(1) (similar to Ex. 6.72).  The distribution 

function of Y is 
)4)(2/1(

4

)4)(2/1( 1)2/1()()( −−−− −==≤= ∫ y
y

t edyeyYPyF  , y ≥ 4. 

a.   [ ] )4()4)(2/1(
2
11)4)(2/1(

)1( 2)( −−−−−− == yyy eeeyg , y ≥ 4. 
 
b.   E(Y(1)) = 5. 
 

6.88 This is somewhat of a generalization of Ex. 6.87.  The distribution function of Y is 
)()( 1)()( θ−−

θ

θ−− −==≤= ∫ y
y

t edyeyYPyF  , y > θ. 

a.   [ ] )4()(1)(
)1( )( −−θ−−−θ−− == ynyny neeenyg , y > θ. 

b.   E(Y(1)) = θ+n
1 . 

 
6.89 Theorem 6.5 gives the joint density of Y(1) and Y(n) is given by (also see Ex. 6.79) 

2
11))(1( ))(1(),( −−−= n

nnn yynnyyg , 0 ≤ y1 ≤ yn ≤ 1. 
Using the method of transformations, let R = Y(n) – Y(1) and S = Y(1).  The inverse 
transformations are y1 = s and yn = r + s and Jacobian of transformation is 1.  Thus, the 
joint density of R and S is given by 

22 )1())(1(),( −− −=−+−= nn rnnssrnnsrf , 0 ≤ s ≤ 1 – r ≤ 1. 
(Note that since r = yn – y1, r ≤ 1 – y1 or equivalently r ≤ 1 – s and then s ≤ 1 – r). 
The marginal density of R is then 

)1()1()1()( 22
1

0

rrnndsrnnrf nn
r

R −−=−= −−
−

∫ , 0 ≤ r ≤ 1. 

FYI, this is a beta density with α = n – 1 and β = 2. 
 

6.90 Since the points on the interval (0, t) at which the calls occur are uniformly distributed, 
we have that F(w) = w/t, 0 ≤ w ≤ t. 
a. The distribution of W(4) is 444

)4( /)]([)( twwFwG == , 0 ≤ w ≤ t.  Thus P(W(4) ≤ 1) = 
16/1)1()4( =G . 

b. With t = 2, 6.14/2/4)(
2

0

4
2

0

44
)4( === ∫∫ dwwdwwWE . 

 
6.91 With the exponential distribution with mean θ, we have θ−

θ= /1)( yeyf , θ−−= /1)( yeyF , 
for y ≥ 0. 
a. Using Theorem 6.5, the joint distribution of order statistics W(j) and W(j–1) is given by 

( ) ( ) ( )θ+−

θ

−θ−−θ−
−−−−

−−−= /)(1/2/
)!()!2(

!
1))(1(

1
2

11),( jjjj wwjnwjw
jnj

n
jjjj eeewwg , 0 ≤ wj–1 ≤ wj < ∞. 

Define the random variables S = W(j–1), Tj = W(j) – W(j–1).  The inverse transformations 
are wj–1 = s and wj = tj + s and Jacobian of transformation is 1.  Thus, the joint density 
of S and Tj is given by 
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( ) ( ) ( )θ+−

θ

−θ+−−θ−
−− −= /)2(1/)(2/

)!()!2(
!

21),( jj tsjnstjs
jnj

n
j eeetsf  

 ( ) ( )θ+−−−θ−
θ

θ+−−
−− −= /)2(2/1/)1(

)!()!2(
! 12

sjnjstjn
jnj

n eee j , s ≥ 0, tj ≥ 0. 
 

The marginal density of Tj is then 

( ) ( )dseeetf sjnjstjn
jnj

n
jT

j

j ∫
∞

θ+−−−θ−
θ

θ+−−
−− −=

0

/)2(2/1/)1(
)!()!2(

! 1)( 2 . 

Employ the change of variables θ−= /seu  and the above integral becomes the integral 
of a scaled beta density.  Evaluating this, the marginal density becomes 

θ+−−
θ
+−= /)1(1)( j

j

tjnjn
jT etf , tj ≥ 0. 

This is the density of an exponential distribution with mean θ/(n – j+1). 
 
b. Observe that 

))(1(...))(2())(1()1( 123121
1

−
=

−+−++−−+−−+=+−∑ rr

r

j
j WWrnWWnWWnnWTjn  

    = W1 + W2 + … + Wr–1 + (n – r + 1)Wr = rr
r

j j UWrnW =−+∑ =
)(

1
. 

Hence, θ=+−= ∑ =
rTErnUE r

j jr 1
)()1()( . 

 
 

6.92 By Theorem 6.3, U will have a normal distribution with mean (1/2)(μ – 3μ) = – μ and 
variance (1/4)(σ2 + 9σ2) = 2.5σ2. 

 
 
6.93 By independence, the joint distribution of I and R is rrif 2),( = , 0 ≤ i ≤ 1 and 0 ≤ r ≤ 1.  

To find the density for W, fix R= r.  Then, W = I2r so I = rW /  and ( ) 2/1
2
1 −= r

w
rdw

di  for 

the range 0 ≤ w ≤ r ≤ 1.  Thus, wrrwf /),( =  and 

( )wdrwrwf w
w

−== ∫ 1
3
2

1

/)( , 0 ≤ w ≤ 1. 

6.94 Note that Y1 and Y2 have identical gamma distributions with α = 2, β = 2.  The mgf is 
2)21()( −−= ttm , t < 1/2. 

The mgf for U = (Y1 + Y2)/2 is 
42/)( )1()2/()2/()()()( 21 −+ −==== ttmtmeEeEtm YYttU

U . 
This is the mgf for a gamma distribution with α = 4 and β = 1, so that is the distribution 
of U. 

 
6.95 By independence, 1),( 21 =yyf , 0 ≤ y1 ≤ 0, 0 ≤ y2 ≤ 1. 

a. Consider the joint distribution of U1 = Y1/Y2 and V = Y2.  Fixing V at v, we can write 
U1 = Y1/v.  Then, Y1 = vU1 and vdu

dy =1 .  The joint density of U1 and V is vvug =),( .  
The ranges of u and v are as follows: 
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• if y1 ≤ y2 , then 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1 
• if y1 > y2 , then u has a minimum value of 1 and a maximum at 1/y2 = 1/v.  

Similarly, 0 ≤ v ≤ 1 
 

So, the marginal distribution of U1 is given by 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

>=

≤≤=

=

∫

∫

1

10

)(
/1

0
2

1

1

0
2
1

2

1

uvdv

uvdv

uf
u

u

U . 

 
b. Consider the joint distribution of U2 = –ln(Y1Y2) and V = Y1.  Fixing V at v, we can 

write U2 = –ln(vY2).  Then, Y2 = ve U /2−  and ve u
du
dy /2 −−= .  The joint density of U2 

and V is vevug u /),( −−= , with –lnv ≤ u < ∞ and 0 ≤ v ≤ 1.  Or, written another way, 
e–u ≤ v ≤ 1. 
 
So, the marginal distribution of U2 is given by 

u

e

u
U uedvveuf

u

−− =−= ∫
−

1

/)(
2

, 0 ≤ u. 

c. Same as Ex. 6.35. 
 
6.96 Note that P(Y1 > Y2) = P(Y1 – Y2 > 0).  By Theorem 6.3, Y1 – Y2 has a normal distribution 

with mean 5 – 4 = 1 and variance 1 + 3 = 4.  Thus, 
P(Y1 – Y2 > 0) = P(Z > –1/2) = .6915. 

 
6.97 The probability mass functions for Y1 and Y2 are: 
 
 
 
 

Note that W = Y1 + Y2 is a random variable with support (0, 1, 2, 3, 4, 5, 6, 7).  Using the 
hint given in the problem, the mass function for W is given by 
 
w p(w) 
0 p1(0)p2(0) = .4096(.125) = .0512 
1 p1(0)p2(1) + p1(1)p2(0) = .4096(.375) + .4096(.125) = .2048 
2 p1(0)p2(2) + p1(2)p2(0) + p1(1)p2(1) = .4096(.375) + .1536(.125) + .4096(.375) = .3264 
3 p1(0)p2(3) + p1(3)p2(0) + p1(1)p2(2) + p1(2)p2(1) = .4096(.125) + .0256(.125) + .4096(.375) 

+ .1536(.375) = .2656 
4 p1(1)p2(3) + p1(3)p2(1) + p1(2)p2(2) + p1(4)p2(0) = .4096(.125) + .0256(.375) + .1536(.375) 

+ .0016(.125) = .1186 
5 p1(2)p2(3) + p1(3)p2(2) + p1(4)p2(1) = .1536(.125) + .0256(.375) + .0016(.375) = .0294 
6 p1(4)p2(2) + p1(3)p2(3) = .0016(.375) + .0256(.125) = .0038 
7 p1(4)p2(3) = .0016(.125) = .0002 
 
Check: .0512 + .2048 + .3264 + .2656 + .1186 + .0294 + .0038 + .0002 = 1. 

y1 0 1 2 3 4 y2 0 1 2 3 
p1(y1) .4096 .4096 .1536 .0256 .0016  p2(y2) .125 .375 .375 .125
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6.98 The joint distribution of Y1 and Y2 is )(

21
21),( yyeyyf +−= , y1 > 0, y2 > 0.  Let U1 = 

21

1
YY

Y
+ , 

U2 = Y2.  The inverse transformations are y1 = u1u2/(1 – u1) and y2 = u2 so the Jacobian of 
transformation is 

2
1

21

1
2

1

2

)1(
1)1(

10 u
uu

u
u

u

J
−

−− == . 

Thus, the joint distribution of U1 and U2 is 
2

1

22121

)1(
])1/([

21 ),(
u

uuuuueuuf
−

+−−= = 2
1

212

)1(
)1/([

u
uuue
−

−− , 0 ≤ u1 ≤ 1, u2 > 0. 

Therefore, the marginal distribution for U1 is 

2
0

)1(
)1/([

1 2
1

212

1
)( dueuf

u
uuu

U ∫
∞

−
−−=  = 1, 0 ≤ u1 ≤ 1. 

Note that the integrand is a gamma density function with α = 1, β = 1 – u1. 
 

6.99 This is a special case of Example 6.14 and Ex. 6.63. 
 
6.100 Recall that by Ex. 6.81, Y(1) is exponential with mean 15/5 = 3. 

a. P(Y(1) > 9) = e–3. 
b. P(Y(1) < 12) = 1 – e–4. 

 
6.101 If we let (A, B) = (–1, 1) and T = 0, the density function for X, the landing point is 

2/1)( =xf , –1 < x < 1. 
We must find the distribution of U = |X|.  Therefore, 

FU(u) = P(U ≤ u) = P(|X| ≤ u) = P(– u ≤ X ≤ u) = [u – (– u)]/2 = u. 
 

So, fU(u) = F′U(u) = 1, 0 ≤ u ≤ 1.  Therefore, U has a uniform distribution on (0, 1). 
 

6.102 Define Y1 = point chosen for sentry 1 and Y2 = point chosen for sentry 2.  Both points are 
chosen along a one–mile stretch of highway, so assuming independent uniform 
distributions on (0, 1), the joint distribution for Y1 and Y2 is 

1),( 21 =yyf , 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1. 
The probability of interest is P(|Y1 – Y2 | < 2

1 ).  This is most easily solved using geometric 
considerations (similar to material in Chapter 5): P(|Y1 – Y2 | < 2

1 ) = .75 (this can easily 
be found by considering the complement of the event). 
 

6.103 The joint distribution of Y1 and Y2 is 2/)(
2
1

21

2
2

2
1),( yyeyyf +−

π= .  Considering the 
transformations U1 = Y1/Y2 and U2 = Y2.  With y1 = u1u2 and y2 = |u2|, the Jacobian of 
transformation is u2 so that the joint density of U1 and U2 is 

2/)]1([
22

12/])[(
22

1
21

2
1

2
2

2
2

2
21),( uuuuu eueuuuf +−

π
+−

π == . 
The marginal density of U1 is 

2
0

2/)]1([
2

1
2

2/)]1([
22

1
1

2
1

2
2

2
1

2
2

1
)( dueudueuuf uuuu

U ∫∫
∞

+−
π

∞

∞−

+−
π == . 

Using the change of variables v = 2
2u  so that dvdu v2

1
2 =  gives the integral 
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)1(
1

0

2/)]1([
2
1

1 2
1

2
1

1
)(

u
uv

U dveuf
+π

∞
+−

π == ∫ , ∞ < u1 < ∞. 

The last expression above comes from noting the integrand is related an exponential 
density with mean )1/(2 2

1u+ .  The distribution of U1 is called the Cauchy distribution. 
 
6.104 a. The event {Y1 = Y2} occurs if  

{(Y1 = 1, Y2 = 1), (Y1 = 2, Y2 = 2), (Y1 = 3, Y2 = 3), …} 
So, since the probability mass function for the geometric is given by p(y) = p(1 – p)y–1, 
we can find the probability of this event by 

P(Y1 = Y2) = p(1)2 + p(2)2 + p(3)2 … = ...)1()1( 42222 +−+−+ ppppp  

      =
p

p
p

ppp
j

j

−
=

−−
=−∑

∞

= 2)1(1
)1( 2

2

0

22 . 

 
b. Similar to part a, the event {Y1 – Y2 = 1} = {Y1 = Y2 + 1} occurs if  

{(Y1 = 2, Y2 = 1), (Y1 = 3, Y2 = 2), (Y1 = 4, Y2 =3), …} 
 Thus,  
  P(Y1 – Y2 = 1) = p(2) p(1) + p(3) p(2) + p(4) p(3)  + …  

=
p
pppppppp

−
−

=+−+−+−
2

)1(...)1()1()1( 52322 . 

 c. Define U = Y1 – Y2.  To find pU(u) = P(U = u), assume first that u > 0.  Thus, 

 ∑∑
∞

=

−−+
∞

=

−−==+===−==
1

11

1
222121

2

22

2

)1()1()()()()(
y

yyu

y

ppppyYPyuYPuYYPuUP  

      =
p
pppppppp

u

x

xu

y

yu

−
−

=−−=−− ∑∑
∞

=

∞

=

−

2
)1()1()1()1()1(

1

22

1

)1(22

2

2 . 

If u < 0, proceed similarly with y2 = y1 – u to obtain 
u
ppuUP

u

−
−

==
−

2
)1()( .  These two 

results can be combined to yield 
u
ppuUPup

u

U −
−

===
2

)1()()(
||

, u = 0, ±1, ±2, … . 

 
6.105 The inverse transformation is y = 1/u – 1.  Then, 

( ) 11
),(

1111
),(

1 )1()( 2
−α−β

βα
β+α−α−

βα −== uuuuf Buu
u

BU , 0 < u < 1. 
This is the beta distribution with parameters β and α. 
 

6.106 Recall that the distribution function for a continuous random variable is monotonic 
increasing and returns values on [0, 1].  Thus, the random variable U = F(Y) has support 
on (0, 1) and has distribution function 

uuFFuFYPuYFPuUPuFU ==≤=≤=≤= −− )]([))(())(()()( 11 , 0 ≤ u ≤ 1. 
The density function is 1)()( =′= uFuf UU , 0 ≤ u ≤ 1, which is the density for the uniform 
distribution on (0, 1). 
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6.107 The density function for Y is 4

1)( =yf , –1 ≤ y ≤ 3.  For U = Y2, the density function for U 
is given by 

[ ])()()( 2
1 ufufuf uU −+= , 

as with Example 6.4.  If –1 ≤ y ≤ 3, then 0 ≤ u ≤ 9.  However, if 1 ≤ u ≤ 9, )( uf −  is not 
positive.  Therefore, 

⎪
⎩

⎪
⎨

⎧

≤≤=+

<≤=+
=

91)0(

10)(
)(

8
1

4
1

2
1

4
1

4
1

4
1

2
1

u

u
uf

uu

uu

U . 

 
6.108 The system will operate provided that C1 and C2 function and C3 or C4 function.  That is, 

defining the system as S and using set notation, we have 
)()()()( 4213214321 CCCCCCCCCCS ∩∩∪∩∩=∪∩∩= . 

At some y, the probability that a component is operational is given by 1 – F(y).  Since the 
components are independent, we have 

)()()()( 4321421321 CCCCPCCCPCCCPSP ∩∩∩−∩∩+∩∩= . 
 Therefore, the reliability of the system is given by 
 

         [1 – F(y)]3 + [1 – F(y)]3 – [1 – F(y)]4 = [1 – F(y)]3[1 + F(y)]. 
 
 

6.109 Let C3 be the production cost.  Then U, the profit function (per gallon), is 

⎩
⎨
⎧

−
<<−

=
otherwise32

3
2

3
1

31

CC
YCC

U . 

So, U is a discrete random variable with probability mass function 

  P(U = C1 – C3) = ∫ −
3/2

3/1

3 )1(20 dyyy = .4156. 

  P(U = C2 – C3) = 1 – ,4156 = .5844. 
 

6.110 a. Let X = next gap time.  Then, .1)60()60( 6−−==≤ eFXP X  
b. If the next four gap times are assumed to be independent, then Y = X1 + X2 + X3 + X4 
has a gamma distribution with α = 4 and β =10.  Thus, 
 

0,)( 10/3
10)4(

1
4 ≥= −

Γ
yeyyf y . 

 
6.111 a. Let U = lnY.  So, ydy

du 1=  and with fU(u) denoting the normal density function, 

[ ]2

2

2
)(ln

2
11 exp)(ln)(

σ
μ−

πσ
−== y

yUyY yfyf , y > 0. 

b. Note that E(Y) = E(eU) = mU(1) = 2/2σ+μe , where mU(t) denotes the mgf for U.  Also, 

E(Y2) = E(e2U) = mU(2) = 
222 σ+μe so V(Y) = 

222 σ+μe – ( ) ( )1
222 222/ −= σσ+μσ+μ eee . 
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6.112 a. Let U = lnY.  So, ydy

du 1=  and with fU(u) denoting the gamma density function, 

1,)(ln)(ln)(ln)( /)1(1
)(

1/)(ln1
)(

11 >=== ββ+−−α
βαΓ

β−−α
βαΓ αα yyyeyyfyf y

yUyY . 

b. Similar to Ex. 6.111: E(Y) = E(eU) = mU(1) = α−β− )1( , β < 1, where mU(t) denotes the 
mgf for U. 
 
c. E(Y2) = E(e2U) = mU(2) = α−β− )21( , β < .5, so that V(Y) = α−β− )21(  – α−β− 2)1( . 
 

6.113 a. The inverse transformations are y1 = u1/u2 and y2 = u2 so that the Jacobian of 
transformation is 1/|u2|.  Thus, the joint density of U1 and U2 is given by 

||
1),/(),(

2
221,21, 2121 u

uuufuuf YYUU = . 

b. The marginal density is found using standard techniques. 
 
c. If Y1 and Y2 are independent, the joint density will factor into the product of the 
marginals, and this is applied to part b above. 
 

6.114 The volume of the sphere is V = 3
3
4 Rπ , or R = ( ) 3/1

4
3 Vπ , so that ( ) 3/23/1

4
3

3
1 −

π= vdv
dr .  Thus, 

( ) 3/13/2
4
3

3
2)( −

π= vvfV , 0 ≤ v ≤ π3
4 . 

 
6.115 a. Let R = distance from a randomly chosen point to the nearest particle.  Therefore, 

P(R > r) = P(no particles in the sphere of radius r) = P(Y = 0 for volume 3
3
4 rπ ). 

Since Y = # of particles in a volume v has a Poisson distribution with mean λv, we have 
P(R > r) = P(Y = 0) = λπ− 3)3/4( re , r > 0. 

Therefore, the distribution function for R is F(r) = 1 – P(R > r) = 1 – λπ− 3)3/4( re and the 
density function is 

3)3/4(24)()( rerrFrf λπ−λπ=′= , r > 0. 
 

b. Let U = R3.  Then, R = U1/3 and 3/2
3
1 −= udu

dr .  Thus, 
u

U euf )3/4(
3

4)( λπ−λπ= , u > 0. 
This is the exponential density with mean λπ4

3 . 
 

6.116 a. The inverse transformations are y1 = u1 + u2 and y2 = u2.  The Jacobian of 
transformation is 1 so that the joint density of U1 and U2 is 

),(),( 221,21, 2121
uuufuuf YYUU += . 

b. The marginal density is found using standard techniques. 
 
c. If Y1 and Y2 are independent, the joint density will factor into the product of the 
marginals, and this is applied to part b above. 


