Chapter 5: Multivariate Probability Distributions

5.1 a. The sample space S gives the possible values for Y; and Y;:
S AA | AB | AC BA BB BC | CA| CB | CC
VYY) 2,0 1LD L0, 1H[0,2)]1,0]d,0[(0,1)](0,0)
Since each sample point is equally likely with probably 1/9, the joint distribution for Y;
and Y, is given by
Yi
0O 1 2
0|19 2/9 1/9
y 112/9 2/9 0
2119 0 0
b. F(1, 0)=p(0, 0) + p(1,0)=1/9 +2/9 =3/9 = 1/3.
5.2 a. The sample space for the toss of three balanced coins w/ probabilities are below:
Outcome | HHH | HHT |HTH | HTT | THH | THT |TTH |[TTT
(Y1, ¥2) GDGDHIEDH A,1D|22][d,2)[d,3)]0,-1)
probability | 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8
Yi
0o 1 2 3
-1|1/8 0 0 0
y. 1|0 1/8 2/8 1/8
210 1/8 1/8 0
310 18 0 0
b. F(2,1)=p(0,-1)+p(1, 1) +p2, 1)=1/2.
5.3

Note that using material from Chapter 3, the joint probability function is given by

bl
Y

P(Y1, Y2) =P(Y1=y1, Y2=Yy2) = ,where 0 <y, 0<y,, and y; + Yy, <3.

In table format, this is

Y1
0 1 2 3
0 3/84 6/84 1/84
Yo 4/84 24/84 12/84 0
12/84 18/84 0 0
3| 4/84 0 0 0
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5.4

5.5

5.6

5.7

5.8

5.9

5.10

a. All of the probabilities are at least 0 and sum to 1.
b. F(1,2)=P(Y; <1, Y,<2)=1. Every child in the experiment either survived or didn’t
and used either 0, 1, or 2 seatbelts.

172 1/3
a P(Y, <1/2,Y,<1/3)= [ [3y,dy,dy, =.1065.
0 0
1 /2

b. P(Y, <Y,/2)=[ [3y,dy,dy, =.5.
0

0

.5

1 .
IldY1dY2 —I yl Y, A :f(~5_ y,)dy, =.125.
i 0

Y2 +.5

a. P(Y, =Y, >.5)=P(Y,>.5+Y,) =

O Cm—y i

1 1 1
b.P(Y,Y, <.5)=1-P(Y,Y, >.5)=1-P(Y, >.5/Y,)=1-[ [ldy,dy, =1-[(1-.5/y,)dy,
5.5/y, 5

— 1 —[.5+.5In(.5)] = .8466.

a. P(Y, <1,Y, >5) =j Te‘(y‘””dyldyz {je‘yl dy, }ﬁe‘”dyz} =[1-e" | =.00426.
05 0 5

372

y
b. P(Y, +Y, <3)=P(Y, <3-Y,)=[ [e " dy,dy, =1-4e" = 8009.
0

S C—y L

11
a. Since the density must integrate to 1, evaluate I I ky,y,dy,dy, =k/4=1,sok=4.
00

Y2 Yi

b' F(ylayz)z P(Yl < ylaYz < yz):4jjtlt2dtldt2 = y12y225 OSYI S 15 ()SyzS 1
00

c. P(Y1 <172, Y, < 3/4) = (1/2)*(3/4)* = 9/64.

LY

a. Since the density must integrate to 1, evaluate I jk(l —y,)dy,dy, =k/6=1,sok=6.
00

b. Note that since Y; <Y, the probability must be found in two parts (drawing a picture is

useful):
3/4 1

P(Y153/4,Y221/2)—j j6(1 y, )dy,dy, + j j6(1 y,)dy,dy, =24/64 + 7/64 = 31/64.

1/2 1/2 1/2y,

a. Geometrically, since Y; and Y, are distributed uniformly over the triangular region,
using the area formula for a triangle k = 1.

b. This probability can also be calculated using geometric considerations. The area of the
triangle specified by Y; > 3Y, is 2/3, so this is the probability.
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5.12

5.13

5.14

5.15
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The area of the triangular region is 1, so with a uniform distribution this is the value of
the density function. Again, using geometry (drawing a picture is again useful):

a. P(Y<3/4,Y,<3/4)=1-P(Y,>3/4)—P(Y,>3/4)=1-1(1)1)-1(1)1)=2.
b. P(Y;-Y,>0)=P(Y;>Y;). The region specified in this probability statement
represents 1/4 of the total region of support, so P(Y; > Y,) = 1/4.

Similar to Ex. 5.11:
a. P(Y<3/4,Y,<3/4)=1-P(Y,>3/4)—P(Y,>3/4)=1-1()1)-1(1)1)=1.
1/2 1/2
b. P(Y,<1/2,Y,<1/2)= [ [2dy,dy, =1/2.
0 0
/2 1/2

9
a F(1/2,1/2)= [ [30y,y;dy,dy, =
0 y-l1

b. Note that:

F(1/2,2)=F1/2,1)=P(Y, <1/2,Y, <1)=P(Y, <1/2,Y, <1/2)+ P(Y, <1/2,Y, > 1/2)
So, the first probability statement is simply F(1/2,1/2) from part a. The second
probability statement is found by

11y,
P(Y, <1/2.Y, >1/2)=j I30yly§dy2dy=i.
1/2 0 16
Thus, F(1/2, 2)=2+i=£.
16 16 16
N 11 21
c. PCY, >Y,)=1-P(Y, <Y,)=1- 30y, y2dy, dy, =1—-—="==.65625.
Y, >Y,) (Y, <Y,) !yflylyzyzyl TRED
1 2-y,
a. Since f(y,,Yy,)=0, simply showJ. I6y12y2dy2dyl =1.
0 vy

S5 1=y
b. P(Y, +Y, <)=P(Y, <1-Y,)=[ [6y]y,dy,dy, =1/16.
0

Y1

2y 22
a P(Y, <2,Y,>1)=|[e™dy,dy, = [ [e™dy,dy, =e™ —2¢7.
11 1y,

b. P(Y, 22Y,)= [e™dy,dy, =1/2.

02y,

c. P(Y, =Y, 2D)=P(Y, 2Y, +1) = [e™dy,dy, =e".

0 y,+
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1 1/2
516 a. P(Y1<1/2,Y2>1/4):_[ I(yl+y2)dy1dy2=21/64=.328125.

174 0
1 1=y,
b. P(Y, +Y, <1)=P(Y, sl—Yz)z_[ j(yl +y,)dy,dy, =1/3.
0

0
5.17 This can be found using integration (polar coordinates are helpful). But, note that this is

a bivariate uniform distribution over a circle of radius 1, and the probability of interest
represents 50% of the support. Thus, the probability is .50.

11

1 1

5.19 a. The marginal probability function is given in the table below.

Vi 0 1 2
pi(y1) | 4/914/9|1/9

b. No, evaluating binomial probabilities with n = 3, p = 1/3 yields the same result.

5.20 a. The marginal probability function is given in the table below.

Y2 -1 1 2 3
pa(y2) | 1/8 | 4/8 | 2/8 | 1/8

b. P(Y, =3|Y, =1) =020 _ 18 _ /4

P(Y,=1) 4/8

5.21 a. The marginal distribution of Y; is hypergeometric with N =9, n =3, and r = 4.

b. Similar to part a, the marginal distribution of Y; is hypergeometric with N=9, n= 3,

and r = 3. Thus,
P(Yl =1 |Y2 — 2) _ Ptn=LY,=2) _ (T][zj(ij/[;][ﬂ =2/3.

P(Y2) [Qj (9]
3 3
C. Similar to part b,

3\(2)(4
P(Y; =1 |Y2 =1)=P(Y, =1 |Y2 =)= P(gl(?lz’zzl):l) — (JE%[J/ 1
3

5.22 a. The marginal distributions for Y; and Y; are given in the margins of the table.
b. P(Yo=0]Y;=0)=.38/.76=.5 P(Y2=1|Y;=0)=.14/76 = .18
P(Y2=2|Y,=0)=.24/76 = .32
C. The desired probability is P(Y;=0| Y, =0) = .38/.55 = .69.
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1
a. fz(yz) = I3y1dy1 :%_%yzza 0< y, < 1.
Y2
b. Defined over y, <y; < 1, with the constant y, > 0.

Y
c. First, we have f,(y,)= J-3yldy2 =3y2,0<y, <1. Thus,
0

f(y,|y))=1/y,,0<y, <y,. So, conditioned on Y; =Yy, we see Y, has a uniform

distribution on the interval (0, y;). Therefore, the probability is simple:
P(Yo>1/21Y,=3/4)=(3/4-1/2)/(3/4) = 1/3.

a. f(y)=L0<y, <1, f,(y,)=1,0<y, <I.

b. Since both Y, and Y; are uniformly distributed over the interval (0, 1), the probabilities
are the same: .2

c.0<y,<I.

d. f(yl ‘ yz): f(Yl):LOS Y <1

e.P(3<Y;<.5]Y,=.3)=.2

FL.P(3<Y,<.5|Y,=.5)=.2

g. The answers are the same.

a. f(y))=e",y,>0, f,(y,)=e,y, >0. These are both exponential density
functions with B = 1.

b. P(1<Y, <25 =P(1<Y, <25)=e" -’ =.2858.

C.y.>0.

d. f(yl |Y,) = fl(yl):eiyl, y, >0.

e. f(y,ly)= fz(yz):eiyz, Yy, >0.

f. The answers are the same.
g. The probabilities are the same.

o))

1
: fl(y1)=I4y1y2dY2 =2y1>0S Y <l f()/2)=2y2a0S Y, <1.
0

1/2

1
[ [ayy.dydy, ,

b. P(Y, <1/2|Y, >3/4) =234 = [2y,dy, =1/4.
[2y.dy, ’
3/4

C. f(yl | yz): fl(yl)zzylaoS y, <1.

o

. f(y2|y1): fz(yz)ZZyZ,OSyZSI.

3/4

- P(Y, <3/4]Y, =1/2) = P(Y, <3/4)= [2y,dy, =9/16.
0

@D
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5.27

5.28

5.29

5.30

1
a f,(y,)=[6(1-y,)dy, =3(1-y,),0<y, <1,

Y1

Y2
f(v2) = [6(1-y,)dy, =6y,(1-Y,),0<y, <.
0

1/2 Y,

J6(1-y,)dy,dy,
b. P(Y, <1/2|Y, <3/4)= L0 ~32/63.

3/4

I3(1 -V )2 dy1
0

c. f(y,1y,)=1/y,,0<y, <y, <l

d. f(y,|y)=20-y,)/(1-y,)",0<y, <y, <I.
e. Frompartd, f(y,|1/2)=8(1-Y,),1/2<y, <1. Thus, P(Y, 23/4|Y,=1/2)=1/4.

Referring to Ex. 5.10:

2
a. First, find f,(y,) = [1dy, =2(1-y,),0<y, <1. Then, P(Y, >.5) = 25.
2y,

b. Firstfind f(y, [Y,)=5755,2Y, <Y, <2. Thus, f(y,[.5)=11<y, <2—the
conditional distribution is uniform on (1, 2). Therefore, P(Y, 21.5]Y, =.5)=.5

Referring to Ex. 5.11:

1=y,
a. f,(y,)= jldyl =2(1-v,),0<y, <1. Inorder to find fi(y;), notice that the limits of
¥2-1
integration are different for 0 <y; <1 and —1 <y; <0. For the first case:
1=y 1+y,

f.(y)= Ildy2 =1-vy,,for0<y;<1. For the second case, f,(y,)= jldyz =1+y,, for
0 0

—1 <y;<0. This can be writtenas f (y,)=1-]y,|,for-1<y;<1.

b. The conditional distribution is f(y, |Y,) for 0 <y;<1—|yi|. Thus,

__1

I=ly;| 2
3/4

f(y,[1/4)=4/3. Then, P(Y, >1/21]Y, =1/4)= .[4/3dy2 =1/3.

1/2

1/4 1=y, 1/4
a. P(Y,>1/2)Y, 31/4)=j jzdyldy2 =3, And, P(Y, <1/4)= j 2(1-y,)dy, = .
0 1/2 0
Thus, P(Y, >21/2|Y, <1/4)=2.
b. Note that f(y, [y,)=+-,0<y, <1-y,. Thus, f(y,|1/4)=4/3,0<y,<3/4.
3/4
Thus, P(Y, >1/2|Y, =1/4)= [4/3dy, = 1/3.

1/2
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1=y
a. f,(y,)= [30y,yjdy, =20y,(1-y,)>, 0<y, <1.
yi-1
b. This marginal density must be constructed in two parts:
1+y2

[30y,y2dy, =15y2(1+y,) —1<y, <0
f,(y,)= 19y2 .
[30y,y2dy, =5y;(1-y,) 0<y,<I
0

c. f(y,|ly)=3y;d-y)>, foryi—1<y,<1-y.
d. f(y,|.75)=2y:i(25)7, for—25<y,<.25,50 P(Y,>0]Y,;=.75) = 5.

2-y,
a f,(y)= [6y}y,dy, =12y;(1-y,),0<y, <I.
Vi
b. This marginal density must be constructed in two parts:

Y2

[6yiv.dy, =2y; o<y, <1
f,(y,) = 2-y, ° .
j6y12y2dy1 :2y2(2_y2)3 1<y, <2
0

C. f(y,ly)=3Y,/d-Yy), Yy, <y, <2-y,.
d. Using

11

the density found in part ¢, P(Y, <1.1|Y, =.6) = %J. y,/.4dy, =.53
.6

Refer to Ex. 5.15:

Y ©
a f(y)=[erdy, =ye™, y,20. f(y,)=[edy,=e™,y,>0.
0

Y
b. f(y, |y,)=e"y >y,.

C. f(Yz ly)=1/y,,0<y, <y,.
d. The density functions are different.
e. The marginal and conditional probabilities can be different.

a. Given Y; =Y, Y, has a uniform distribution on the interval (0, y;).

b. Since fi(y1))=1,0<y; <1, f(yi,y2) =f(y2 | yOh(y) =1/, 0=y <y, < L.
1

c. f,(y,)= jl/yl dy, =-In(y,),0<y, <I.

Y2

With Y, = 2, the conditional distribution of Y, is uniform on the interval (0, 2). Thus,

P(Y2<1|Y1:2):.5.
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1
536 a. fl(y1)=j(y1+y2)dy2=y1+%,0§y1§1. Similarly f,(y,)=y,+1,0<y,<1.
0

1 1 1
b. First, P(Y, 2 )= [(y, 1) =3, and P(Y, 24.Y, 2 )= [ [(y, +y,)dy,dy, =3.
1/2 1/2 1/2

Thus, P(Y, 21|Y, >1)=2.

[ (v, +1)dy,

C. P(Y,>.75]Y,=.5) =& = 34375,
T2

0 |—

5.37 Calculate f,(y,)= I%e_(y“yl)/zdyl =1e™'? y,>0. Thus, Y, has an exponential
0

distribution with =2 and P(Y,>2)=1-F(2) = el

5.38 This is the identical setup as in Ex. 5.34.
a fyLy)=fO2[yofiy)=1/y1,0<y, <y, < 1.

b. Note that f(y | 1/2)=1/2, 0 <y, < 1/2. Thus, P(Y2< 1/4|Y, = 1/2)=1/2.

c. The probability of interest is P(Y; > 1/2 | Y, = 1/4). So, the necessary conditional
density is f(y1 [ Y2) = f(y1, V2)/fa(y2) = 555, 0= Y2 <Y1 < 1. Thus,
1
P(Y; > 1/2|Y, = 1/4) = jmdy1 =1/2.

1/2

5.39 The result follows from:
P(Y, =y, |W =w)= P(Y, =y,,W =w) _ PY, =y,.Y, +Y, =w) _ P, =Y,.Y, =W—y1)_
PW =w) PW =w) PW =w)

Since Y, and Y, are independent, this is

a Vet [y Woyig—r2
P, =y)P(Y,=w-y,) 57 Uy
P(Yl = yl |W = W) = ! PI(VV :2W) L= (7?,/1-#7»2)("”:()“{)“)2) )
Y1 W=y,
A e PP .
Y AR +2, A+,
7\'l

This is the binomial distribution with n=w and p = .
A+ A,
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540 As the Ex. 5.39 above, the result follows from:
PEY, =y, [W =w) = PY, =y, ,W =w) _ P(Y, =Y,.Y, +Y, =w) _ P(Y, =v,.Y, :W—yl)_
PW =w) PW =w) PW =w)

Since Y; and Y, are independent, this is (all terms involving p; and p, drop out)

(”1}( : j
PY, =y, (W =w)= PO =YIPG, =w=y,) LY AW=Y, yish

PW =w) [nl+n2J o 0<w-y, <n,’
w

541 LetY =# of defectives in a random selection of three items. Conditioned on p, we have
3
P =vy]| p)=(yjpy(1— P, y=0,12,3.

We are given that the proportion of defectives follows a uniform distribution on (0, 1), so
the unconditional probability that Y = 2 can be found by

P(Y =2)=[P(Y =2,p)dp=[P(Y =2| p)f (p)dp = [3p>(1- p)*"dp =3[ (p* - p*)dp
=1/4.

5.42 (Similar to Ex. 5.41) Let Y =# of defects per yard. Then,
p(y)=[P(Y =y,2)dh = [P(Y = y[ ) F)d = [ 257 dr = (1), y=0,1,2, ...
0 0 0

Note that this is essentially a geometric distribution (see Ex. 3.88).

543  Assume f(y,|y,)=f,(y,). Then, f(y,,y,)=f(y,[Y,)f,(y,)=1f(y))f,(y,) so that
Y, and Y; are independent. Now assume that Y; and Y, are independent. Then, there

exists functions g and h such that f(y,,y,)=9(y,)h(y,) so that

L= [ ] £(y,,y2)dy,dy, = [g(y)dy, x[ h(y,)dy, .
Then, the marginals for Y; and Y, can be defined by
()= 9hy:) 4 90
Jatyndy, x[hey,)dy, — Jaty)ay,
Thus, f(y,,y,)=f,(y,)f,(y,). Now itis clear that
fCy 1y,) =Ty y,)/ f,0,) = fi(y) f,(y,)/ £,(y,) = f,(y),

provided that f,(y,)> 0 as was to be shown.

h(y,)
;50 f,(y,)= .
[hey,)dy,

5.44  The argument follows exactly as Ex. 5.43 with integrals replaced by sums and densities
replaced by probability mass functions.

5.45 No. Counterexample: P(Y; =2,Y,=2)=0£P(Y, =2)P(Y,=2)=(1/9)(1/9).

5.46 No. Counterexample: P(Y; =3,Y,=1)=1/8 #P(Y; =3)P(Y,=1) = (1/8)(4/8).
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5.47 Dependent. For example: P(Y; =1, Y, =2) #P(Y; = 1)P(Y,=2).
5.48 Dependent. For example: P(Y; =0, Y, =0) # P(Y; = 0)P(Y,=0).
Y 1
549  Note that f,(y,)= [3y,dy, =3y;,0<y, <1, f,(y,)=[3y,dy, =3[1-y}],0<y, <1.
0 Y1
Thus, f(y,,y,)# f,(y,)f,(y,) sothatY; and Y, are dependent.
1 1
550 . Note that f,(y,)=[1dy, =1,0<y, <1 and f,(y,)=[ldy, =1,0<y, <1. Thus,
0 0

f(y,,y,)=f,(y,)f,(y,) sothatY; and Y, are independent.

b. Yes, the conditional probabilities are the same as the marginal probabilities.

551 a. Note that fl(yl):J'e‘(y“yz)dy2 =e ', y, >0 and 1:2(y2):_[e‘(y'+y2)dy1 =e,y,>0.
0 0

Thus, f(y,,y,)=f,(y,)f,(y,) sothatY; and Y, are independent.
b. Yes, the conditional probabilities are the same as the marginal probabilities.

5.52 Note that f(y,,Y,) can be factored and the ranges of y; and y, do not depend on each
other so by Theorem 5.5 Y; and Y, are independent.

5.53 The ranges of'y; and Yy, depend on each other so Y; and Y, cannot be independent.
5.54  The ranges of'y; and Yy, depend on each other so Y; and Y, cannot be independent.
5.55 The ranges of'y; and Yy, depend on each other so Y; and Y, cannot be independent.
5.56 The ranges of'y; and Yy, depend on each other so Y; and Y, cannot be independent.
5.57 The ranges of'y; and Yy, depend on each other so Y; and Y, cannot be independent.

5.58 Following Ex. 5.32, it is seen that f(y,,y,)# f,(y,)f,(y,) sothatY, and Y, are
dependent.

5.59 The ranges of'y; and Yy, depend on each other so Y; and Y, cannot be independent.

5,60 FromEx.5.36, f,(y,)=Yy,+3,0<y;<1l,and f,(y,)=Yy,+3,0<y,<1. But,
f(y,,y,) = f,(y,)f,(y,) soY;and Y, are dependent.

5.61 Note that f(y,,y,) can be factored and the ranges of y; and y, do not depend on each
other so by Theorem 5.5, Y, and Y, are independent.
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5.64

5.65
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Let X, Y denote the number on which person A, B flips a head on the coin, respectively.
Then, X and Y are geometric random variables and the probability that the stop on the
same number toss is:

P(X=LY =D+P(X =2Y =2)+---=P(X =DPY =D)+P(X =2)P(Y =2)+---

2

=Y P(X =)P(Y =i) =Y p(1-p)" p(1-p)"' = p* Y [(1-p)*] =— .
izl =) k=0 1-(1-p)

o Y| 0 ©

P(Y, >Y,.Y, <2Y,) = [e"™dy,dy, =1 and P(Y, <2Y,)=[ [e™*"dy,dy, =3. So,
0y, /2 0y,/2

P(Y, >Y, |Y, <2Y,)=1/4.
1y 1y,/2

P(Y, >V,.Y, <2Y2):.[ Ildyzdy1 =1, P(Y, <2Y,)=1-P(Y, zzyz)zl_j Ildyzdyl =3,
0y/2 0 0

So, P(Y, >Y, |Y, <2Y,)=1/3.
a. The marginal density for Y, is f,(y,) = J'[(l—oc(l—ze—y] )(1-2e7")]e ™ =dy,
0
— g [J‘e‘yz dy, —o(1-2e7" )_f(e_yz —2e7)dy, }
0 0

e De‘” dy, —a(l-2e7")(1- 1)} =e,
0

which is the exponential density with a mean of 1.
b. By symmetry, the marginal density for Y, is also exponential with = 1.

c. When a =0, then f(y,,y,)=e""" =1 (y,)f,(y,) and so Y; and Y, are independent.
Now, suppose Y; and Y, are independent. Then, E(Y,Y;) = E(Y)E(Y,) =1. So,

E(Y1Y2 ) = II YiYs [(1 - Ot(l —2e™n )(1 —De™% )]e_yl_yl dyldyz
00
= vy vy, - O‘D Vi(1-2e7)e™ dylHj y,(1-2¢7)e ¥ dy,
00 0 0

=1-a(l-1)1-1)=1-0a/4. This equals 1 only if &= 0.

a. Since F, () =1, F(y,,»)= Fl(yl)'l'[l_(x{l_ F (Y} {1_1}]: F(y).

b. Similarly, itis F,(y,) from F(y,,Yy,)

c.Ifa=0, F(y,,y,)=F(y,)F,(Y,), so by Definition 5.8 they are independent.

d. Ifa#0, F(y,,y,)# F(y,)F,(Y,), so by Definition 5.8 they are not independent.
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5.67 P(a<Y,<b,c<Y,<d)=F(b,d)-F(b,c)-F(a,d)+F(a,c)
= F,(b)F,(d) - F,(b)F,(c) - F,(a)F,(d) + F,(a)F,(c)
=F,(0)[F,(d)-F,(0)]- F(a)[F,(d)-F,(©)]
=[F, (b)-F ()] [F,(d)-F,(c)]
=P(a<Y, <b)xP(c <Y, <d).

2
; j(.z)yl (8>, y1=0,1,2,and p,(y,)=(3)"(7N)"™",y,=0, 1:

1

5.68 Giventhat p,(y,)= (

2

a. p(Y1,Y,) =Py (Y)P,(Y,) = (y J(-Z)” (:8)7(3) ()7, y1=0,1,2andy, =0, I.

1

b. The probability of interest is P(Y, +Y, <1)= p(0, 0)+ p(1, 0)+ p(0, 1) = .864.

.69 a. f(yn yz) = f1(Y1)fz(yz) = (1/9)9_(YI+yZ)/3 > Y1 > 0: Y>> 0.

1 1=y,
b. P(Y, +Y, <1)=[ [(1/9)e™" ™ dy,dy, =1-4e"" = .0446.

0 0

5.70  With f(ylayz): fl(yl)fz(yz)zlaOSYIf I,OSY2§ 1:
1/4 Y, 1 Vi
P(Y2<Yi<Ya+ U4)= [ [ldy,dy, + [ [idy,dy, =7/32.
0

0 1/4 y,-1/4

5.71  Assume uniform distributions for the call times over the 1-hour period. Then,
a. P(Y, <1/2)Y, £1/2)=P(Y, <1/2P(Y, <1/2)=(1/2)(1/2)=1/4.
b. Note that 5 minutes = 1/12 hour. To find P(]Y, -Y, [£1/12), we must break the
region into three parts in the integration:

1/12 y,+1/12 11/12 y,+1/12 1 1
P(Y, =Y, |<1/12)= [ [idy,dy,+ [ [idy,dy,+ [ [1dy,dy, =23/144.
0 0 1/12 y,-1/12 11/12 y,-1/12

572 a E(Y;)=2(1/3) = 2/3.
b. V(Y1) = 2(1/3)(2/3) = 4/9
c. E(Y; — Y2) = E(Y;) — E(Y2) = 0.

5.73  Use the mean of the hypergeometric: E(Y;) = 3(4)/9 = 4/3.

5.74  The marginal distributions for Y; and Y; are uniform on the interval (0, 1). And it was
found in Ex. 5.50 that Y; and Y; are independent. So:

E(Yi—Y2) =E(Y1) - E(Y2)=0.

E(Y1Y2) = E(YDE(Y2) = (1/2)(1/2) = 1/4.

E(Y:2+ Yo%) = E(YD) + E(Y,Y) = (1/12 + 1/4) + (1/12 + 1/4) = 2/3

V(Y1Y2) = V(Y)V(Y2) = (1/12)(1/12) = 1/144.

oo
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5.75 The marginal distributions for Y, and Y, are exponential with B =1. And it was found in
Ex. 5.51 that Y; and Y; are independent. So:
a. E(Y1+Y)=EY)+EM2)=2,V(Y1+Y2)=V(Y1)+ V(Y2) =2.

b. P(Y,-Y,>3)=P(Y,>3+Y,)=[ [e™dy,dy, =(1/2)e* =.0249.

0 3+y,

c. P(Y, =Y, <-3)=P(Y,>Y,-3)=| [e ™ dy,dy, =(1/2)e" =.0249.
1 2 1 2 2 1
0 3+y,

d. E(Y1-Y2)=E(M1)—E(Y2) =0, V(Y1 —Y2) = V(Y1) + V(Y>) = 2.

e. They are equal.

5.76  From Ex. 5.52, we found that Y; and Y, are independent. So,

1
a. E(Y,)=[2yldy, =2/3.
0

1
b. E(Y)=[2y/dy, =2/4,50 V(Y,)=2/4-4/9=1/18.
0

C. E(Yi—Y2) =E(Y)) - E(Y,) =0.

5.77 Following Ex. 5.27, the marginal densities can be used:

1 1
a. E(Y1)=j3y1(1—y1)2dy1=1/4, E(Y2)=j6y2(1—y2)dy2=1/2.
0 0
1
b. E(Y*)=[3y,(1-y,)*dy, =1/10, V(Y,)=1/10—(1/4)* =3/80,
0

1
E(Yj):jéyj(l— y,)dy, =3/10, V(Y,)=3/10—(1/2)* =1/20.
0

. E(Yi—3Y2)=E(Y))—3E(Y,) = 1/4-3/2=-5/4,

5.78 a. The marginal distribution for Yy is fi(y;) =y1/2, 0 <y; <2. E(Y;)=4/3, V(Y,) = 2/9.
b. Similarly, fa(y>) = 2(1 —¥,), 0 <y> < 1. So, E(Y,) = 1/3, V(Y;) = 1/18.
C.E(Yi—=Y2)=E(Y)—E(Y2)=4/3-1/3=1.

d. V(Y1 = Y2) = E[(Y1 = Y2)*] = [E(Y1 = Y2)I* = E(Y,?) = 2E(Y,Y2) + E(Y2%) - 1.

1 2
Since E(Y1Y2) = | [y,y,dy,dy, =1/2, we have that
02y,

V(Y1 —Ya) = [2/9 + (4/3)] — 1 + [1/18 + (1/3)"] — 1 = 1/6.

Using Tchebysheftf’s theorem, two standard deviations about the mean is (.19, 1.81).
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5.79

5.80

5.81

5.82

5.83

5.84

5.85

5.86

Referring to Ex. 5.16, integrating the joint density over the two regions of integration:
0 1+y, 1 1=y

E(Yle):J. J-ylyzdyzdyl"'J- J-ylyZdyZdyl =0
-1 o 0 0

From Ex. 5.36, f,(y,)=Yy,+3,0<y;<1,and f,(y,)=Y,+3,0=<y,<1. Thus,
E(Y,)=7/12 and E(Y,) = 7/12. So, E(30Y; + 25Y,) =30(7/12) + 25(7/12) = 32.08.

Since Y, and Y; are independent, E(Y,/Y;) = E(Y2)E(1/Y,). Thus, using the marginal
densities found in Ex. 5.61,

E(Ya/Y1) = E(Y2)E(1/V) = £ [ y,e ™ dy, E [er /zdyl} —2(1)=1.
0 0

The marginal densities were found in Ex. 5.34. So,
1

E(Yi = Y2) = E(Y)) —E(Y2) = 12 [-y, In(y,)dy, =1/2—1/4=1/4.

0

From Ex. 3.88 and 5.42, E(Y)=2-1=1.

All answers use results proven for the geometric distribution and independence:
a. E(Y1))=E(Y2)=1/p, E(Y1—Y2) =E(Y1) —E(Y2) =0.
b. E(Y1") = E(Y2") = (1-p)/p” + (1/p)° = (2 - p)/p’. E(Y1Y2) = E(Y)E(Y2) = 1/p”.
c. E[(Y1—Y2)’]=E(Y%) = 2E(Y,Y2) + E(Y2%) = 2(1 — p)/p*.

V(Y1 = Y2) = V(Y1) + V(Y2) = 2(1 - p)/p”.
d. Use Tchebysheff’s theorem with k = 3.

a. E(Y1) = E(Y2) =1 (both marginal distributions are exponential with mean 1)

b. V(Y1) =V(Yy)) =1

c. E(Y1—Y2)=E(Y)) - E(Yy)=0.

d. E(Y1Y2) =1-a/4, so Cov(Yy, Y2) =— a/4.

e. V(Y1 —Y2) = V(Y1) + V(Y2) — 2Cov(Yy, Y2) = 1 + o/2. Using Tchebysheff’s theorem
with k =2, the interval is (=22 +a/2, 2¥2+0a./2).

Using the hint and Theorem 5.9:
a. E(W)=E@E(Y,"?)=0E(Y,"?)=0. Also, V(W) = E(W?) — [E(W)]* = E(W?).
Now, E(W?) = E(Z)E(Y,") = I-E(Y,") =E(Y,") = vi > 2 (using Ex. 4.82).

b. E(U)=E(YDE(Y,") =325, v2 >2,V(U) = E(U%) - [E(U)]* = E(Y, >E(Y{2>—(VZ‘

v2’

7 2v,(vi+v,-2)

viVi +2) e - <v2_z)2 T e 0 V2 >4
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5.87

5.88

5.89

5.90

5.91

5.92

5.93

5.94
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a. E(Yl + Yz) = E(Y]) + E(Yz) =v;+ vy
b. By independence, V(Y1 + Y,) = V(Y1) + V(Y3) = 2v; + 2v,.

It is clear that E(Y) = E(Y;) + E(Y2) + ... + E(Ys). Using the result that Yi follows a
geometric distribution with success probability (7 — i)/6, we have

6
E(Y) = Z% — 14 6/5+6/4+6/3+62+6=147,
i1 /1

Cov(Y1,Y2) = E(Y1Y2) ~ E(YDE(Y2) = 35"y, ¥, P(¥,. ¥,) — [2(1/3)] =219 —4/9 = -2/9.,
i V2
As the value of Y, increases, the value of Y; tends to decrease.

From Ex. 5.3 and 5.21, E(Y,) =4/3 and E(Y;) = 1. Thus,
E(YiY2) = 1) +2(D5+1(2)5 =1
So, Cov(Y1,Y2) =E(Y1Y2) — E(Y)E(Y2) =1—(4/3)(1) =-1/3.

11
From Ex. 5.76, E(Y1) = E(Y2) = 2/3. E(Y1Y2) = [ [4y}y3dy,dy, =4/9. So,
00

Cov(Y1,Y2) = E(Y1Y2) — E(Y1)E(Y2) =4/9 — 4/9 = 0 as expected since Y; and Y, are
independent.

1Y

From Ex. 5.77, E(Y1) = 1/4 and E(Y2) = 1/2. E(YY2) = [ [6y,y,(1-y,)dy,dy, = 3/20.
00

So, Cov(Y1,Y2) =E(Y1Y2) — E(Y1)E(Y2) = 3/20 — 1/8 = 1/40 as expected since Y; and Y, are

dependent.

a. From Ex. 5.55 and 5.79, E(Y,Y;) =0 and E(Y;) = 0. So,
Cov(Y1,Y2) = E(Y1Y2) —E(Y1)E(Y2) = 0—-0E(Y,) = 0.
b. Y, andY; are dependent.
c. Since Cov(Y1, Y2)=0,p=0.
d. If Cov(Yy,Y2) =0, Y, and Y, are not necessarily independent.

a. Cov(U; Ua) =E[(Y1 +Y2)(Y1 = Y2)] —E(Y1 + Y2)E(Y1 —Y>2)
= E(Y/") ~E(Y2) - [E(VD) - [E(YV)T
= (o7 +p7) — (o) +13) = (b —p3) =07 - 0.
=G>

b. Since V(U;) = V(Uy) = o} +o3 (Y, and Y; are uncorrelated), p = 62 2.
G +0;

c. If 612 = G;, U; and U, are uncorrelated.
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5.95 Note that the marginal distributions for Y; and Y, are

5.96

5.97

5.98

5.99

5.100

5.101

5.102

5.103

5.104

yi | 101 y. |01
puy) | 13| 173 ] 173 pa(y2) | 2/3 ] 173

So, Y, and Y; not independent since p(—1, 0) # p1(—=1)p2(0). However, E(Y;) =0 and
E(Y1Y2) = (=1)(0)1/3 + (0)(1)(1/3) + (1)(0)(1/3) = 0, so Cov(Y;,Y2) = 0.

a. Cov(Y1,Y2) = E[(Y1 — p)(Y2— p2)] = E[(Y2— p2)(Y1 — )] = Cov(Y2, Y1).
b. Cov(Y1, Y1) = E[(Y1 — pu)(Y1— p)] = E[(Y1 — m)’] = V(Y)).

a. From Ex. 5.96, Cov(Y;,Yy) =V(Y)) =2.

b. If Cov(Y,Y2) =7, p=7/4> 1, impossible.

c. With p= 1, Cov(Y;,Y2) = 1(4) = 4 (a perfect positive linear association).

d. With p= —1, Cov(Y;,Y2) =—1(4) = —4 (a perfect negative linear association).

Cov(Y,,Y,)

<1I.
WDW )

Since E(c) = ¢, Cov(c, Y) = E[(c — ¢)(Y— )] = 0.

Since p> < 1, we have that -1 <p <1 or—1 <

a. E(Y)=E@2)=0,E(Y,)=E@Z)=1.

b. E(Y,Y,) = E(Z®) = 0 (odd moments are 0).

c. Cov(Y1. Y1) =E(Z’) - EQQE(@ZH) =0.
d.P(Y2>1|Y,>1)=P(Z*>1|Z>1)=1#P(Z*>1). Thus, Y, and Y, are dependent.

a. Cov(Y1,Y2)) =E(Y1Y2) —E(YDE(Y2) =1—-0/4—(1)(1) = —%.

b. This is clear from part a.

c. We showed previously that Y| and Y, are independent only if o = 0. If p =0, if must be
true that a = 0.

The quantity 3Y; + 5Y, = dollar amount spend per week. Thus:
E(3Y; + 5Y,) = 3(40) + 5(65) = 445.
E(3Y; +5Y2) =9V(Y)) +25V(Y2) =9(4) + 25(8) = 236.

EQY, +4Y, - 6Y3) = 3E(Y)) + 4E(Y2) — 6E(Y3) = 3(2) + 4(-1) — 6(—4) =22,
V(3Y) +4Y, — 6Y3) = OV(Y)) + 16V(Y2) + 36E(Y3) + 24Cov(Y1, Y2) — 36Cov(Y1, Y3) —
48Cov(Y2, Y3) = 9(4) + 16(6) + 36(8) + 24(1) — 36(—1) — 48(0) = 480.

a. Let X=Y; + Y,. Then, the probability distribution for X is
x | 1| 2 | 3
p(x) | 7/84 | 42/84 | 35/84
Thus, E(X) = 7/3 and V(X) = .3889.

b. E(Y; +Y2)=E(Y)) + E(Y2) =4/3 +1="7/3. We have that V(Y;) = 10/18, V(Y;) = 42/84,
and Cov(Y, Y;)=-1/3, so
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V(Y1 +Y2) =V(Y1) + V(Y2) + 2Cov(Y2, Y3) = 10/18 + 42/84 — 2/3 =7/18 = .3889.
5.105 Since Y; and Y; are independent, V(Y +Y2) =V(Y;) + V(Y;)=1/18 + 1/18 = 1/9.

5.106 V(Y —3Y,) = V(Y)) + OV(Y2) — 6Cov(Y1, Ya) = 3/80 + 9(1/20) — 6(1/40) = 27/80 = .3375.

1

1 1=y,
5.107 Since E(Y) = E(Y2) = 1/3, V(Y1) = V(Y2) = 1/18 and E(Y,Y2) = [ [2y,y,dy,dy, = 1/12,
0 0

we have that Cov(Y, Y;)=1/12 — 1/9 =—-1/36. Therefore,
E(Y,+Y2)=1/3+1/3=2/3and V(Y; +Y;)=1/18 + 1/18 + 2(-1/36) = 1/18.

5.108 From Ex. 5.33, Y, has a gamma distribution with o =2 and B = 1, and Y; has an
exponential distribution with § = 1. Thus, E(Y; + Y3) =2(1) + 1 = 3. Also, since

0 Y
E(YiY2) = [ [y,y,e7dy,dy, =3, Cov(Y1 Y =3-2(1)=1,
00
V(Y = Ya) =201 + 12 =2(1) = 1.

Since a value of 4 minutes is four three standard deviations above the mean of 1 minute,
this is not likely.

5.109 We have E(Y;) = E(Y2) = 7/12. Intermediate calculations give V(Y;) = V(Y) = 11/144.
11
Thus, E(Y;Y,) = j jy1 v, (Y, + ¥, )dy,dy, =1/3, Cov(Y1.Y)) = 1/3 — (7/12)* = —1/144.
00
From Ex. 5.80, E(30Y; + 25Y,) =32.08, so

V(30Y; + 25Y5) = 900V(Y;) + 625V(Y2) + 2(30)(25) Cov(Y1. Y1) = 106.08.

The standard deviation of 30Y; + 25Y; is +/106.08 = 10.30. Using Tchebysheff’s
theorem with k = 2, the interval is (11.48, 52.68).

5.110 a. V(1 +2Y;)=4V(Y1), V(3 +4Y2) =16V(Y>), and Cov(l + 2Yy, 3 +4Y;) =8Cov(Y1, Y2).
8Cov(Y,.Y,)

S

b. V(1 +2Y;)=4V(Y,), V(3 —4Y;) = 16V(Y>), and Cov(1 + 2Y, 3 — 4Y,) =-8Cov(Yy, Y2).
-8Cov(Y,,Y,)

so. NNy, L

c. V(1 —2Y;) = 4V(Y)), V(3 — 4Y2) = 16V(Y3), and Cov(l — 21, 3 — 4Y,) = 8Cov(Y1, Ya).
8Cov(Y,.Y,)

NN AR
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5.111

5.112

5.113

5.114

5.115

a. V(a+ bY,) = b*V(Y)), V(c + dY,) = d*V(Y>), and Cov(a + bY,, ¢ + dY,) = bdCov(Y, Y).
bdCov(Y,,Y,) bd

\/bZV(Y WAV (Y,) “|bd |

So, py, w, Py,y, - Provided that the constants b and d are

nonzero, % is either 1 or —1. Thus, [py , |=|pyy, |-

b. Yes, the answers agree.

In Ex. 5.61, it was showed that Y, and Y, are independent. In addition, Y, has a gamma
distribution with o =2 and = 2, and Y, has an exponential distribution with § =2. So,
with C =50 + 2Y; + 4Y,, it is clear that

E(C) =50+ 2E(Y,) +4E(Y,) =50+ (2)(4) + (4)(2) = 66

V(C) =4V(Y)) + 16V(Yy) =4(2)(4) + 16(4) = 96.

The net daily gain is given by the random variable G = X — Y. Thus, given the
distributions for X and Y in the problem,

E(G) = E(X) - E(Y) =50 — (4)(2) = 42
V(G) = V(G) + V(G) = 3% + 4(2%) = 25.

The value $70 is (70 — 42)/5 = 7.2 standard deviations above the mean, an unlikely value.

Observe that Y| has a gamma distribution with o =4 and B = 1 and Y; has an exponential
distribution with f =2. Thus, with U =Y, - Y>,

a. EU)=4(1)-2=2

b. V(U)=4(1%)+2°=8

C. The value 0 has a z—score of (0 —2)/ V8 =-.707, or it is —.707 standard deviations
below the mean. This is not extreme so it is likely the profit drops below 0.

Following Ex. 5.88:
a. Note that for non—negative integers aand b and i # |,

P(Yi=a,Yj=b)=P(Yj=b|Yi=a)P(Yi=a)
But, P(Yj=b | Yi=a)=P(Yj=b) since the trials (i.e. die tosses) are independent —

the experiments that generate Y; and Y; represent independent experiments via the
memoryless property. So, Y; and Yj are independent and thus Cov(Y;. Yj) = 0.

b, VIY)=V(Y)) + ... FV(Yg) =0+ L6 4 206 | 3l6 4 a/6 4 _si6_—380Q

(5/6)> ' (4/6)F © (3/6)* ' (2/6)* © (1/6)

c. From Ex. 5.88, E(Y) = 14.7. Using Tchebysheff’s theorem with k = 2, the interval is
14.7£2+/38.99 or (0, 27.188)
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5.116 V(Y;+Y2) =V(Y1) + V(Y2) +2Cov(Y1, Y2), V(Y1 = Y2) = V(Y1) + V(Y1) — 2Cov(Y1, Y2).
When Y, and Y, are independent, Cov(Y, Y2) = 0 so the quantities are the same.

5.117 Refer to Example 5.29 in the text. The situation here is analogous to drawing n balls
from an urn containing N balls, r; of which are red, r, of which are black, and N—r; —r;
are neither red nor black. Using the argument given there, we can deduce that:

E(Y))=np V(Y)=np;(1-p)(¥=2)  where p; =r/N
E(Y,) =np, V(Y2) =npy(1-py)(82)  where p, = /N
Now, define new random variables fori=1, 2, ..., n:
1 if alligatori is a mature female 1 if alligatori is a mature male
T {O otherwise T {O otherwise

Then, Y, = ZUi and Y, = ZVi . Now, we must find Cov(Yi, Y;). Note that:
i=1 i=1

E(Y,Y,) = E[iui ,Zn:viJ = iE(uivi)+ZE(uivj).

i=1 i=1 i#]

Now, since for all i, E(U;, Vi) = P(Ui= 1, Vi= 1) = 0 (an alligator can’t be both female
and male), we have that E(U;, Vi) = 0 for all i. Now, fori#],

E(UL V) =P(Ui=1,Vi=1)=P(U; = DP(V; = 1|U; = 1) = L )= p, p, .
Since there are n(n — 1) terms in Z E(U\V,), we have that E(Y1Y2) =n(n— 1) 5 p, P, -

i#]

Thus, Cov(Y1, Y2) =n(n— 1) p, p, — (p)(P2) = =552 Py P, -
So, E[Y#_Y?z]:#(npl_npz) =P =P,

V[ ]= LV (V) 4V ()= 2Cov(Y,.Y,)] = 252 (p, + p, —(p, - p.)°)

5.118 LetY = X; + X,, the total sustained load on the footing.
a. Since X; and X, have gamma distributions and are independent, we have that
E(Y)=50(2) +20(2) = 140
V(Y) = 50(2%) + 20(2%) = 280.

b. Consider Tchebysheff’s theorem with k = 4: the corresponding interval is
140 +4+/280 or (73.07,206.93).

So, we can say that the sustained load will exceed 206.93 kips with probability less
than 1/16.
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5.119

5.120

5.121

5.122

5.123

5.124

5.125

a. Using the multinomial distribution with p; = p, = p3; = 1/3,
P(Y;=3,Y,=1,Y;=2)= 2 (1)° =.0823.

b. E(Y:) =n/3, V(Y1) = n(1/3)(2/3) =2n/9.

c. Cov(Ya, Y3) =-—n(1/3)(1/3) =-—n/9.

d. E(Y2-Y3)=n/3—-n/3=0,V(Y2-Y3)=V(Y2) + V(Y3) — 2Cov(Y>, Y3) = 2n/3.

E(C) =E(Y) + 3E(Y,2) = np; + 3np..
V(C) = V(Yl) + 9V(Y2) + 6COV(Y1, Y2) =np:q; + 9np2q2 — 6np1p2.

If N is large, the multinomial distribution is appropriate:
a P(Yi=2,Y;=1)= 55(37(D'(6)* =.0972.

e[ %)== p-p=3-1-2
[ - rf] B/(Y )+V(Y )—2Cov(Y,,Y, )] = By Bh BB = 072,

Let Y, = # of mice weighing between 80 and 100 grams, and let Y, = # weighing over 100
grams. Thus, with X having a normal distribution with p =100 g. and 6 =20 g.,
p1=PB0<X<100)=P(-1<Z<0)=.3413
p>=P(X>100)=P(Z>0)=.5
a. P(Y1=2,Y,=1)= 52-(3413)*(.5)'(.1587)' =.1109.

b. P(Y2=4)= 44 (.5)" =.0625.

Let Y, = # of family home fires, Y, = # of apartment fires, and Y; = # of fires in other
types. Thus, (Y1, Y2, Y3) is multinomial with n =4, p; =.73, p, =.2 and p; = .07. Thus,
PY1=2,Y,=1,Y3=1)= 6(.73)2(.2)(.07) = .08953.

Define C = total cost = 20,000Y; + 10,000Y, + 2000Y;
a. E(C)=20,000E(Y;) + 10,000E(Y>) + 2000E(Y3)
=20,000(2.92) + 10,000(.8) + 2000(.28) = 66,960.

b. V(C)=(20,000)*V(Y;) + (10,000)*V(Y>) + (2000)*V(Y3) + covariance terms
= (20,000)*(4)(.73)(.27) + (10,000)*(4)(.8)(.2) + (2000)*(4)(.07)(.93)
+2[20,000(10,000)(—4)(.73)(.2) + 20,000(2000)(—4)(.73)(.07) +
10,000(2000)(—4)(.2)(.07)] = 380,401,600 — 252,192,000 = 128,209,600.

Let Y, =# of planes with no wine cracks, Y, = # of planes with detectable wing cracks,
and Y; = # of planes with critical wing cracks. Therefore, (Y}, Y2, Y3) is multinomial with
n=>5,p;=.7,p,=.25 and p; = .05.

a. P(Y1=2,Y>=2,Y3=1)=30(.7)2(.25)%.05) = .046.

b. The distribution of Y3 is binomial with n =5, p; = .05, so
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P(Y;>1)=1-P(Y;=0)=1-(.95) = .2262.
5.126 Using formulas for means, variances, and covariances for the multinomial:
E(Y)=10(.1)=1 V(Y)) =10(.1)(.9)=.9
E(Y,) =10(.05)=.5 V(Y,) = 10(.05)(.95) = .475
Cov(Y1, Y2) =—10(.1)(.05) =—.05
So,
E(Y:+3Y2)=1+3(.5)=25
V(Y1 +3Y2) =.9+9(475) + 6(-.05) = 4.875.

5.127 Y is binomial withn=10, p=.10 + .05 =.15.
10 5 o
a. PY=2)= 5 (.15)7(.85)" =.2759.
b. P(Y>1)=1-P(Y=0)=1-(.85)'""=.8031.
5.128 The marginal distribution for Y; is found by
Ly = [ Ty, y.)dy, .

Making the change of Variables u=(y1—w)o and V= (Y2 — Ww)/o; yields

f
)= nclwll p’ ‘f { 2(1-

To evaluate this, note that u® +v* —2puv = (v — pu) +u*(1-p*) so that

1 eV .[exp (v—pu)z}dv

1
fl 1=— _—2
W= i & h(l—p)

So, the integral is that of a normal density with mean pu and variance 1 — p*. Therefore,
f =
1Y) 20,

which is a normal density with mean p; and standard deviation ¢;. A similar procedure
will show that the marginal distribution of Y; is normal with mean p, and standard
deviation o;.

(u +v? - 2puv)}dv

(Y1) /262
e Yi—H1) Gl,—OO<y1<OO,

5.129 The result follows from Ex. 5.128 and defining f(y, | y,) = f(y,,Y¥,)/ f,(y,), which
yields a density function of a normal distribution with mean p, +p(c,/c,)(y, —u,) and

variance o;(1-p°).

5130 a. Cov(U,,U,)=> > ab,Cov(Y,Y;) =) abV(Y;)=c>> ab;, since the Y;’s are
i=1 i=1

i=1 j=1

independent. If Cov(U,,U,) =0, it must be true that Zaib ; = 0since o> > 0. But, it is

i=1

trivial to see if zaibj =0, Cov(U,,U,) =0. So, U; and U, are orthogonal.

i=1
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5.131

5.132

5.133

5.134

5.135

5.136

5.137

5.138

b. Given in the problem, (U,,U,) has a bivariate normal distribution. Note that
E(UD)=pD a8, E(U)=pd b, V(U)=0c’>a’,and V(Uy) = 6> > b’ . If they are
i=1 i=1 i=1 i=1

orthogonal, Cov(U,,U,) =0 and then p, , =0. So, they are also independent.

a. The joint distribution of Y; and Y5 is simply the product of the marginals f,(y,) and
f,(y,) since they are independent. It is trivial to show that this product of density has
the form of the bivariate normal density with p = 0.

b. Following the result of Ex. 5.130, leta; =a,=b; =1 and b, =—1. Thus, Zaibj =0
i1
so U; and U, are independent.

Following Ex. 5.130 and 5.131, U, is normal with mean p; + p, and variance 26° and U,
is normal with mean p; — p, and variance 267

From Ex. 5.27, f(y,|y,)=1/Y,,0<y;<y,and f,(y,)=6y,(1-y,),0<y,<1.
a. Tofind E(Y, |Y, =Y,), note that the conditional distribution of Y; given Y, is uniform

on the interval (0, y2). So, E(Y, |Y, = y,) = %
b. To find E(E(Y, |Y,)), note that the marginal distribution is beta with o =2 and § = 2.
So, from part a, E(E(Y, |Y,)) = E(Y2/2) = 1/4. This is the same answer as in Ex. 5.77.

The z—score is (6 — 1.25)/4/1.5625 = 3.8, so the value 6 is 3.8 standard deviations above
the mean. This is not likely.

Refer to Ex. 5.41:
a. Since Y is binomial, E(Y|p) = 3p. Now p has a uniform distribution on (0, 1), thus
E(Y) =E[E(Y|p)] = E(3p) = 3(1/2) = 3/2.
b. Following part a, V(Y|p) = 3p(1 — p). Therefore,
V(p) =E[3p(1 —p)] + V(3p) = 3E(p — p*) + 9V(p)
=3E(p) - 3[V(p) + (E(p))’] + 9V(p) = 1.25

a. For a given value of A, Y has a Poisson distribution. Thus, E(Y | A) = A. Since the
marginal distribution of A is exponential with mean 1, E(Y) =E[E(Y |A\)]=EQ) =1.

b. From part a, E(Y | A) =X and so V(Y | ) =A. So, V(Y)=E[V(Y | V)] + E[V(Y |A)] =2

C. The value 9is (9 — 1)/ V2 =5.657 standard deviations above the mean (unlikely score).

Refer to Ex. 5.38: E(Y, |Y, =Y,) =Vyi/2. Fory,=3/4, E(Y,|Y, =3/4) =3/8.

If Y =# of bacteria per cubic centimeter,
a. E(Y)=E)=E[EY|MN]=E®Q)=ap.
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b. V(Y)=E[V(Y | V)] + VIE(Y | )] = op + o> = aB(1+B). Thus, o =+/ap(l+p).

5139 a. E(T|N=n)= E(Zn:Yij:Zn:E(Yi):nocB.

b. E(T)=E[E(T |N)]=E(Nap)=rap. Note that this is E(N)E(Y).
5.140 Note that V(Y1) = E[V(Y1 | Y2)] + VIE(Y: | Y2)], so E[V(Y1 | Y2)] = V(Y1) = VIE(Y: | Y2)].
Thus, E[V(Y1 | Y2)] < V(Y)).

5.141 E(Y2)= E(E(Y, |Y,)) = E(V1/2) = %

207

V(Y1) = E[V(Y2 | YD)T+ VIE(Y2 | YD =E[Y2/12]+ V[Y,1/2] = QA)/12 + (A2 =

no

5.142 a. E(Y) = E[E(Y|p)] = E(np) = NE(p) = b

b. V(Y) = E[V(Y | p)] + VIE(Y | p)] = E[np(1 — p)] + V(np) = NE(p — p*) + n*V(p). Now:

~2y_ ho  na(a+l)
PRI @ P e peD)
2 _ n“af
V) (+P) (a+p+1)’
So, V(Y) = no no(a.+1) N n‘af _ naP(a+B+n)

a+f  (a+P)a+B+l)  (a+P)’(a+P+l) (a+P)(a+p+1)

5.143 Consider the random variable y;Y, for the fixed value of Y;. Itis clear that y;Y; has a
normal distribution with mean 0 and variance y; and the mgf for this random variable is

m(t) = E(e¥")=e" /%
Thus, m, (t)=E(eY)=E(@")=E[E@E"" |Y,)]=EE" ?)= | ﬁe(-yf 2ty
Note that this integral is essentially that of a normal density with mean 0 and variance
—= , so the necessary constant that makes the integral equal to 0 is the reciprocal of the

standard deviation. Thus, m; () = (1 —t? )71/2 . Direct calculations give m/,(0) =0 and
m;(0)=1. To compare, note that E(U) = E(Y,Y2) = E(Y1)E(Y2) = 0 and V(U) = E(U?%) =
E(Yi*Y2) = E(Y/)E(Y,) = ()(1) = 1.
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5.144

5.145

5.146

5.147

5.148

5.149

5.150

E[g(Yl)h(Yz)] = zzg(y1)h(y2)p(y1: yz) :zzg(yl)h(yz)pl(y1)pz(Y2) =

i Y2 i V2

ZQ(Y1)p1(Y1 )zh(yz)pz(yz) =E[g(Y,)]xE[h(Y,)].
y y

The probability of interest is P(Y; + Y, < 30), where Y, is uniform on the interval (0, 15)
and Y, is uniform on the interval (20, 30). Thus, we have

30 30-y2 1
P(Y, +Y, <30) = | j[w]( jdyldyz 1/3.
20 0

Let (Y1, Y,) represent the coordinates of the landing point of the bomb. Since the radius
is one mile, we have that 0 < y; +y; < 1. Now,

P(target is destroyed) = P(bomb destroys everything within 1/2 of landing point)
This is given by P(Y,”> +Y,” <(4)?). Since (Y1, Y,) are uniformly distributed over the unit
circle, the probability in question is simply the area of a circle with radius 1/2 divided by
the area of the unit circle, or simply 1/4.

Let Y, = arrival time for 1* friend, 0 <y, <1, Y, = arrival time for 2" friend, 0 < Yy, <1.

Thus f(y;, y2) = 1. If friend 2 arrives 1/6 hour (10 minutes) before or after friend 1, they
will meet. We can represent this event as |Y; — Y| < 1/3. To find the probability of this

event, we must find:

1/6 Yy, +1/6 5/6 Yy +1/6
P(Y, -Y, [<1/3)= | j1dy2dyl+j Ildyzdy1+j .[ldyzdyl =11/36.
0 1/6 y,-1/6 5/6 y,-1/6

4 3 2
a. p(ylayz) %’y _0,1,23)’2 071,23y1+YZ<3
3

b. Y, is hypergeometric w/ r =4, N=9, n= 3; Y, is hypergeometric w/ r=3,N=9,n=3

C.P(Yi=11]Y>>1)=[p(1, 1)+ p(1, 2)V/[1 — px(0)] = 9/16

a. f,(y)= I3yldy2—3y1,o<y1<1 fi(y)= j3yldyl 3(1-y5),0<y,<1.

Y2

b. P(Y, <3/4|Y,<1/2)=23/44.

c.fiyi|y2) =2y, (1-y;),y><y1 < 1.
d. P(Y, <3/4|Y,=1/2)=5/12.

a. Note that f(y, | y1) = f(y1, ¥2)/f(y1) = 1/y1, 0 < y, <y;. This is the same conditional
density as seen in Ex. 5.38 and Ex. 5.137. So, E(Y2 | Y1 =Y1)=VY1/2.
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5.152

5.153

5.154

5.155
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1
b. E(Y2) = E[E(Y> | Y1)] = E(Yi/2) = [43y7dy, =3/8.

0
1
c. E(Y2) = [y, 3(1-y})dy, =3/8.
0

a. The joint density is the product of the marginals: f(y,,y,) = B%ef(y#yzw , Y1 =00,y >00

a-y,

b. P(Y, +Y, <a)=[ [Le ™ Pdydy, =1~ [1+a/ple".
0 0

The joint density of (Y1, Y2)is f(y,,Yy,)=18(y, —y;)ys,0<y;<1,0<y,<1. Thus,

1 1
P(Y1Y><.5)=P(Y1<.5/Y2) =1 —-P(Y;>.5/Y2)=1— j jlg(yl —y2)y2dy,dy, . Using
5.5y,

straightforward integration, this is equal to (5 — 3In2)/4 = .73014.

This is similar to Ex. 5.139:

a. Let N =+# of eggs laid by the insect and Y = # of eggs that hatch. Given N =n, Y has a
binomial distribution with n trials and success probability p. Thus, E(Y | N=n) =np.
Since N follows as Poisson with parameter A, E(Y) = E[E(Y | N )] = E(Np ) = Ap.

b. V(Y) =E[V(Y [ N)] + VIE(Y | \)] = E[Np(1 — p)] + V[Np] = Ap.

The conditional distribution of Y given p is binomial with parameter p, and note that the
marginal distribution of p 1s beta with oo =3 and B = 2.

1 1 1
a. Note that f(y)=[ f(y,p)=[ f(y| p)f(p)dp=12@]j p’*?(1- p)"*'dp. This
0 0 0

integral can be evaluated by relating it to a beta density w/ o=y + 3, =n+y+ 2.

Thus,
n _
fy)y=12 " FOZYEDIOES) oy o n
y I'(n+5)

b. Forn=2, E(Y|p)=2p. Thus, E(Y) = E[E(Y|p)] = E(2p) = 2E(p) = 2(3/5) = 6/5.

a. It is easy to show that
Cov(Wi, W5) = Cov(Y; + Y2, Y1 +Y3)
= COV(Yl, Yl) + COV(Y], Y3) + COV(Yz, Y1) + COV(Yz, Y3)
= COV(Yl, Yl) = V(Yl) =2v,.

b. It follows from part a above (i.e. the variance is positive).
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5.156 a. Since E(Z) = E(W) = 0, Cov(Z, W) = E(ZW) = E(Z2Y 2 ) = E(ZH)E(Y "?) = E(Y ?).
This expectation can be found by using the result Ex. 4.112 with a =-1/2. So,

v 1

F,_,
Cov(Z, W) =E(Y ""?)= —22—22 provided v> 1.

J2re)

b. Similar to part a, Cov(Y, W) = E(YW) = E(\/Y W) = E(+Y )E(W) = 0.

C. This is clear from parts (a) and (b) above.

]g }Lym—le—x[(ﬁﬂ)/m i F(y +(X)(%)y+a

o T(y+DI(a)p® Ty + DI (o)™
it was assumed that o was an integer, this can be written as

_(yro=ty B V(LY
p(y)—( y j[ﬁﬂj [B+J’y 0,1,2,....

5.158 Note that for each X;, E(Xj) = p and V(Xi) = pg. Then, E(Y) =XE(X;) =np and V(Y) = npq.
The second result follows from the fact that the X; are independent so therefore all
covariance expressions are 0.

y=0,1,2,.... Since

5.157 p(y) =f pCy [2) f(R)dh =

5.159 For each Wi, E(W;) = 1/p and V(W;) = q/p. Then, E(Y) = ZE(X;) = r/p and V(Y) = rg/p’.
The second result follows from the fact that the W; are independent so therefore all
covariance expressions are 0.

5.160 The marginal probabilities can be written directly:

P(X;=1)=P(select ball 1 or 2) =.5 )=.5
P(X;=1)=P(selectball 1 or3)=.5 PX;=0)=.5
P(X; =1)=P(select ball 1 or 4)=.5 )=.5

Now, for 1 # J, Xj and X; are clearly pairwise independent since, for example,

P(X; = 1, X» = 1) = P(select ball 1) = .25 = P(X; = 1)P(X, = 1)
P(X; = 0, X, = 1) = P(select ball 3) = .25 = P(X; = 0)P(X, = 1)

However, Xi, X, and X3 are not mutually independent since

P(X; =1, X, =1, X3 = 1) = P(select ball 1) = .25 # P(X; = 1)P(X, = )P(X, = 3).
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5161 E(Y —X)=E(Y)-E(X)=1TEY,)~4ZE(X,)=p, -
V(Y = X)=V(Y)+V(X) = LIV(Y)+LTV(X,) =0 /n+ci/m

5.162 Using the result from Ex. 5.65, choose two different values for a with -1 <a < 1.
5.163 a. The distribution functions with the exponential distribution are:

Fly)=1-e",y120;  F(y,)=1-e",y,20.
Then, the joint distribution function is
F(y,y,)=[1-e"]J[1-e " ][1-a(e™)(e™)].

2

Finally, show that F(y,,Y,) gives the joint density function seen in Ex. 5.162.

1 2

b. The distribution functions with the uniform distribution on (0, 1) are:

Fi(y) =y, 0y =1; F,(Y,) = ¥2, 0=y < 1
Then, the joint distribution function is

F(ylayz): yly2[1_a’(1_yl)(l_y2)]'

02
C.
0y,

F(Y,,Y,) = f(Y,Y,)=1-a[(1-2y,)(1-2y,)],0<y; <1,0<y, < 1.

d. Choose two different values for a with—1 <a <1.

5164 a.Ift,=t,=t;=t, then m(t, t, t) = E(e"*"***)). This, by definition, is the mgf for the
random variable X; + X; + X;.

b. Similarly with t; =t, = tand t; = 0, m(t, t, 0) = E(e"*™*).

c. We prove the continuous case here (the discrete case is similar). Let (X;, Xz, X3) be
continuous random variables with joint density function f(X,,X,,X;). Then,

m(tl,tz,t3):_|' _[ J'e“xletzxze%f(xl,xz,x3)dx1dx2dx3.
Then,
6k1+kz+k3 o 0 ® . kK
Wm(tlatzstS)‘tltzt30 = J- J- J‘Xllxz2 X33 f(X19X27X3)dX1dX2dX3 :

—00 —00 —0

This is easily recognized as E(X Xk xie )

5.165 a. m(tl,tz,t) zzle‘xz% t1X1+t2x2+t3X3p x2 3X3

= ZZZXI.XZ.X,(ple“)*l(pze‘Z)XZ(me“)*‘ = (p,e" + p,e® +p,e”)". The

final form follows from the multinomial theorem.
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5.166

5.167

b. The mgf for X; can be found by evaluating m(t, 0, 0). Note thatq=p, +p;=1—ps.

c. Since Cov(X;, X;) = E(X1X2) — E(X))E(X) and E(X;) = np; and E(X;) = np, since X; and

X, have marginal binomial distributions. To find E(X;X;), note that
2

ot at,

m(t,.t, ,0)‘ 4,0 =NMN=D)p, P, .
Thus, Cov(X;, X5) =n(n — 1)pip2 — (Np1)(NP2) = —Np1P2.

The joint probability mass function of (Y, Y», Y3) is given by
GGG L)
Yi AY2 Y y y y
p(y1:y2’y3): 1 Nz = l ’\i : >
n n

where y; + Y, + Y3 =n. The marginal distribution of Y; is hypergeometric with r = Np;, so
E(Y) = npi, V(Y1) = npi(1-p) (=) Similarly, E(Y2) = npa, V(Y2) = npa(1-p2) (=1). 1t
can be shown that (using mathematical expectation and straightforward albeit messy
algebra) E(Y;Y2) = n(n—1)p, p, 7. Using this, it is seen that

Cov(Y1,Y2) = n(n=1)p, p, w5 —(P1)(P) = -npip2 (4h).
(Note the similar expressions in Ex. 5.165.) Finally, it can be found that

_ P, P,
P= \/(l—pl)(l—p»'

a. For this exercise, the quadratic form of interest is
At? + Bt +C = E(Y)t* +[2E(Y,Y,)It+[E(Y,)].
Since E[(tY, — Y2)*] > 0 (it is the integral of a non—negative quantity), so we must have

that At +Bt+C >0. In order to satisfy this inequality, the two roots of this quadratic
must either be imaginary or equal. In terms of the discriminant, we have that

B2 -4AC<0,or
[_2E(Y1Y2 )]2 _4E(Y12)E(Y22) <0.
Thus, [E(Y,Y,)]" <E(Y)E(Y,).

b. Let W = E(Yl), W = E(Yz), and define Z] = Y1 — MU, Zz = Y2 — Wa. Then,

2 _ [ECY, —p)(Y, _Hz)]2 _ [E(lez)]z <1
[E(Yl _Ml)z]E[(Yz _Hz)z] E(Z12)E(Zzz)
by the result in part a.



