Chapter 16: Introduction to Bayesian Methods of Inference
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Refer to Table 16.1.

a. £(10,30)

b. n=25

c. £(10,30),n=25

d. Yes

e. Posterior for the A(1,3) prior.

a.-d. Refer to Section 16.2
a.-e. Applet exercise, so answers vary.
a.-d. Applex exercise, so answers vary.

It should take more trials with a beta(10, 30) prior.

Here, L(y | p)= p(Y| p)=(;jpy(l— p)",wherey=0,1,...,nand 0<p<1. So,

f(wp)=[§]p%1—py“yXlﬁliﬁlp*WI—pﬁ*

T(o)[(B)
so that
(M T@+B) o oyt g L(a+PB) T(y+o)(n—y +P)
= Bl S 1- dp = }
my) ﬂ&jﬂaﬁ$)p A= =T r®) Trasp)
The posterior density of p is then
g (ply)=— L FEEEB) ety gop<r,

L(y+o)l(n-y+p)
This is the identical beta density as in Example 16.1 (recall that the sum of n i.i.d.
Bernoulli random variables is binomial with n trials and success probability p).

a. The Bayes estimator is the mean of the posterior distribution, so with a beta posterior
with a =y + 1 and p =n—Yy + 3 in the prior, the posterior mean is

~ Y +1 Y 1
Ps = = + .
n+4 n+4 n+4
- E(Y)+1 np+1 . Vv np(1—
b. E(py) = I L y(py= YO TRU=P)
n+4 n+4 (n+4) (n+4)
. .o Y +1
a. From Ex. 16.6, the Bayes estimator for p is pB:E(p|Y):—2.
n+

b. This is the uniform distribution in the interval (0, 1).

c. We know that p =Y /n is an unbiased estimator for p. However, for the Bayes
estimator,
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E(Y)+1 np+1
n+2 n+2

A V() _npd-p)
andV(Ps) = T iy
2 2
Ths, MSE(py) =V (By)+B(p, ) = B2 ML | WP B)(-2D)
d. For the unbiased estimator p, MSE(p)=V(p)=p(l —p)/n. So, holding n fixed, we
must determine the values of p such that
np(l-p)+(1-2p)° _ p(i-p)
(n+2)* n
The range of values of p where this is satisfied is solved in Ex. 8.17(c).

E(Ps) =

16.9 a.Here, L(y|p)=p(y|p)=(1-p)" "' p,wherey=1,2,...and0<p<1. So,

(.9 == pxp SE P A=)
so that
CET@HB) g T(@tB) Do+ DIy +B-1)
"= are ™ P P R ore ryrarp
The posterior density of p is then
0'(ply)=—EEAEY) e pyr2 g<p<l.

IMNa+DI(+y-1)
This is a beta density with shape parameters o’ =a+ landp =p+y— 1.

b. The Bayes estimators are
- o+l
(1) Pg=E(p|Y)=

a+B+Y’
~ B B 5 _ o+l (a+2)(a+1)
(2) [pd-pls =E(PIY)-E(p"[Y) a+B+Y (a+B+Y +D)(a+B+Y)
 (a+DB+Y -1
C(a+B+Y +D)(a+p+Y)’

where the second expectation was solved using the result from Ex. 4.200. (Alternately,

1
the answer could be found by solving E[ p(1-p)|Y]= J p(l-p)g (p|Y)dp.
0

16.10 a. The joint density of the random sample and 0 is given by the product of the marginal
densities multiplied by the gamma prior:
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0“" exp(—0/P)

(Vi ¥0r®) = [T, Ocxp(-6y, )]r( B

n+a-1 n+a-—1
o 5L o

() () DINES

b. m(y,,....¥,) T ) J 0" e [ O/HB}de,butthis integral resembles
0

BZi:l yi+1
B

that of a gamma density with shape parameter n + a and scale parameter Zn—
BY y, +1
i=1 71

Thus, the solution is m(y,,...,Y,) =

1 B )
(o) (n+B)[lenly,+1} '

C. The solution follows from parts (a) and (b) above.

d. Using the result in Ex. 4.111,

1

g =E(u[Y)=E1/6]Y) = 5

o —1) [BZ Y, +1(n+al)]

BleY'+l le' 1

B(n+0c—1) n+oa-1 B(n+a—l)

e. The prior mean for 1/6 is E(1/6) = (again by Ex. 4.111). Thus, [i; can be

Pla—1)

N _Y—( n )+ 1 ( Ot—l ]
He = n+ta-1) Bla-1){n+a-1)

which is a weighted average of the MLE and the prior mean.

written as

f. We know that Y is unbiased; thus E(Y ) == 1/0. Therefore,

A n 1 a-1 Y 1 n 1 o-1
E(fg)= E(Y)(n+a_1j+B(a_l)(nm_lj‘ e(n+a_1)+ﬁ(a—1)(n+a—1)'

Therefore, [1; is biased. However, it is asymptotically unbiased since
E(i;)-1/6 0.

Also,
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V<a5)=V<Y‘>( i j 1( i j=i+—>0.

nva-1) nln+a-1) 6 (nro—1)

So, iy —%—>1/6 and thus it is consistent.

16.11 a. The joint density of U and A is

_ (k)" exp(—n\) y 1
- u! [(0)B®
A exp(—nh —A/B)

f(u,2)=p(u|r)g(r) A exp(=A/B)
— nu
CUuIl(o)B®

_ n" purot eXp|:— }\/( B ):|
ull(a)B” np+1

b. m(u) n—j Aot exp{— 7/ (BH dA , but this integral resembles that of a

T U (o)p” ) np+1

gamma density with shape parameter U + o and scale parameter

. Thus, the
np+1

solution is m(u) = ﬁr(u + oc)[%) .

C. The result follows from parts (a) and (b) above.

d. Ay =EA|U)=a'B = (U +a)[nBB+lj'

e. The prior mean for A is E(A) = afy. From the above,

C o B \_¢[ B 1
7“B_(Zi1Yi+a{nﬁ+]j_Y(nB+lj+aB[nB+lj’

which is a weighted average of the MLE and the prior mean.

f. We know that Y is unbiased; thus E(Y ) =\ Therefore,

- nB 1 _ nB !
E“B)—EW)[—nmJ*“B(nsn] K(nﬁﬂjmﬁ(nﬁﬂj'

So, A is biased but it is asymptotically unbiased since
E(hg) —L— 0.

Also,
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oo Y A g ), np
V(kB)_V(Y)(nBHj _n[nBHJ x(nBH)z_)O'

So, Ay —E—> A and thus it is consistent.

16.12 First, it is given that W = vU = VZ‘:‘:1 (Y, —u,)’ is chi-square with n degrees of freedom.

Then, the density function for U (conditioned on V) is given by

1 n/2-1 __—uv/2 1 n/2-1,,n/2 5—uv/2
foulv)=v/f,(UW)=v———— =—Uu e .
u (V) =M ) F(n/2)2”/2( ) r'(n/2)2"">
a. The joint density of U and Vv is then
1 1
f(uv)=f,(ulv)g(v) =——u""*"'v"?exp(-uv/2)x vl exp(-v/
(u,v) = fy (ulv)g(v) F(n/ 22" p( ) (o) p(-v/P)
1

u" v exp(—uv/2 - v/B)

T T(n/2)[(a)2"2B"

1 n/2-1,,n/2+a-1 |: /( 2B }:|
= u Vv exp| —V/| ——— ||
I(n/2)I'(a)2"*B* up+2

b. m(u)= ! > u"/z_ljvn/zm‘_1 expl —V 2P dv, but this integral
r(n/2)f2"p* 1 up+2

resembles that of a gamma density with shape parameter n/2 + a and scale parameter

n/2-1 n/2+o
2p . Thus, the solution is m(u) = u ——I(n/2+a) 2P .
up+2 I'(n/2)'(a)2" "B up+2

C. The result follows from parts (a) and (b) above.

d. Using the result in Ex. 4.111(e),

62 —E(c’ |U)=E(/v|U)=— =] Up+2)_ UB+2
B'(a —=1) n/2+a—-1{ 2P B(n+2a-2)

e. The prior mean for 6° =1/v = . From the above,

1
pla—1)

3 UB+2 U( n j 1 ( 2(a—1) ]
GB= = — + .
B(n+20-2) nin+2a-2) Bla-1){n+20-2

16.13 a. (.099, .710)
b. Both probabilities are .025.
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c. P(.099 <p <.710) = .95.
d.-g. Answers vary.
h. The credible intervals should decrease in width with larger sample sizes.

16.14 a.-b. Answers vary.

16.15 Withy =4, n=25, and a beta(1, 3) prior, the posterior distribution for p is beta(5, 24).
Using R, the lower and upper endpoints of the 95% credible interval are given by:
> gbeta(.025,5,24)
[1] 0.06064291
> gbeta(.975,5,24)
[1] 0.3266527

16.16 Withy=4,n=25, and a beta(1, 1) prior, the posterior distribution for p is beta(5, 22).

Using R, the lower and upper endpoints of the 95% credible interval are given by:
> gbeta(.025,5,22)

[1] 0.06554811

> gbeta(.975,5,22)

[1] 0.3486788

This i1s a wider interval than what was obtained in Ex. 16.15.

16.17 Withy =6 and a beta(10, 5) prior, the posterior distribution for p is beta(11, 10). Using

R, the lower and upper endpoints of the 80% credible interval for p are given by:
> gbeta(.10,11,10)

[1] 0.3847514

> gbeta(.90,11,10)

[1] 0.6618291

16.18 Withn=15, Zin:l y; =30.27, and a gamma(2.3, 0.4) prior, the posterior distribution for

0 is gamma(17.3, .030516). Using R, the lower and upper endpoints of the 80% credible

interval for 0 are given by

> ggamma(-10,shape=17.3,scale=.0305167)
[1] 0.3731982

> ggamma(.90,shape=17.3,scale=.0305167)
[1] 0.6957321

The 80% credible interval for 0 is (.3732, .6957). To create a 80% credible interval for
1/8, the end points of the previous interval can be inverted:

3732 <0 <.6957
1/(.3732) > 1/6 > 1/(.6957)

Since 1/(.6957) = 1.4374 and 1/(.3732) = 2.6795, the 80% credible interval for 1/0 is
(1.4374, 2.6795).
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16.19

16.20

16.21

16.22

16.23

16.24

With n =25, Zin:l y; =174, and a gamma(2, 3) prior, the posterior distribution for A is

gamma(176, .0394739). Using R, the lower and upper endpoints of the 95% credible

interval for A are given by

> ggamma(.025,shape=176,scale=.0394739)
[1] 5.958895

> ggamma(-975,shape=176,scale=.0394739)
[1] 8.010663

With n =8, u=.8579, and a gamma(5, 2) prior, the posterior distribution for v is
gamma(9, 1.0764842). Using R, the lower and upper endpoints of the 90% credible

interval for v are given by

> ggamma( -05,shape=9,scale=1.0764842)
[1] 5-054338

> ggamma(.95,shape=9,scale=1.0764842)
[1] 15.53867

The 90% credible interval for v is (5.054, 15.539). Similar to Ex. 16.18, the 90% credible
interval for o® = 1/v is found by inverting the endpoints of the credible interval for v,
given by (.0644, .1979).

From Ex. 6.15, the posterior distribution of p is beta(5, 24). Now, we can find
P (peQ,)=P (p<.3) by (inR):

> pbeta(-3,5,24)
[1] 0.9525731

Therefore, P"(peQ,)=P"(p>.3) =1-.9525731 = .0474269. Since the probability
associated with Hy is much larger, our decision is to not reject Hy.

From Ex. 6.16, the posterior distribution of p is beta(5, 22). We can find
P'(peQ,) =P (p<.3) by (inR):

> pbeta(.3,5,22)
[1] 0.9266975

Therefore, P (peQ,)=P (p=>.3) =1-.9266975 = .0733025. Since the probability
associated with Hy is much larger, our decision is to not reject Hy.

From Ex. 6.17, the posterior distribution of p is beta(11, 10). Thus,
P (peQ,)=P"(p<.4) is given by (in R):

> pbeta(.4,11,10)
[1] 0.1275212

Therefore, P'(peQ,)=P"(p>.4) =1-.1275212 = .8724788. Since the probability
associated with H, is much larger, our decision is to reject Hy.

From Ex. 16.18, the posterior distribution for 6 is gamma(17.3, .0305). To test
Ho: 0> .5vs. Ha: 6 <5,
we calculate P (0e€Q,)=P"(0>.5) as:
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> 1 - pgamma(.5,shape=17.3,scale=.0305)
[1] 0.5561767

Therefore, P"(0eQ,)=P (0>.5) =1 —.5561767 = .4438233. The probability
associated with Hy is larger (but only marginally so), so our decision is to not reject H.

From Ex. 16.19, the posterior distribution for A is gamma(176, .0395). Thus,
P"(LeQ,)=P (A >6) is found by

> 1 - pgamma(6,shape=176,scale=.0395)
[1] 0.9700498

Therefore, P*(A € Q)= P'(A <6) =1-.9700498 = .0299502. Since the probability
associated with Hy is much larger, our decision is to not reject Hy.

From Ex. 16.20, the posterior distribution for v is gamma(9, 1.0765). To test:
Ho: v <10 vs. Ha: v > 10,
we calculate P (veQ,)=P (v<10) as

> pgamma(10,9, 1.0765)
[1] 0.7464786

Therefore, P"(A € Q,)=P"(v>10) = 1 —.7464786 = .2535214. Since the probability
associated with Hy is larger, our decision is to not reject Hy.



