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Chapter 3: Discrete Random Variables and Their Probability Distributions 
 
3.1 P(Y = 0) = P(no impurities) = .2, P(Y = 1) = P(exactly one impurity) = .7, P(Y = 2) = .1. 
  
3.2 We know that P(HH) = P(TT) = P(HT) = P(TH) = 0.25.  So, P(Y = -1) = .5, P(Y = 1) = 

.25 = P(Y = 2). 
 
3.3 p(2) = P(DD) = 1/6, p(3) = P(DGD) + P(GDD) = 2(2/4)(2/3)(1/2) = 2/6, p(4) = 

P(GGDD) + P(DGGD) + P(GDGD) = 3(2/4)(1/3)(2/2) = 1/2. 
 
3.4 Define the events: A: value 1 fails B: valve 2 fails C: valve 3 fails 

)()2( CBAPYP ∩∩==  = .83 = 0.512 
)()())(()0( CBPAPCBAPYP ∪=∪∩== = .2(.2 + .2 - .22) = 0.072. 

Thus, P(Y = 1) = 1 - .512 - .072 = 0.416. 
 

3.5 There are 3! = 6 possible ways to assign the words to the pictures.  Of these, one is a 
perfect match, three have one match, and two have zero matches.  Thus,  

p(0) = 2/6, p(1) = 3/6, p(3) = 1/6. 
 

3.6 There are ⎟⎟
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 = 10 sample points, and all are equally likely: (1,2), (1,3), (1,4), (1,5), 

(2,3), (2,4), (2,5), (3,4), (3,5), (4,5). 
a. p(2) = .1, p(3) = .2, p(4) = .3, p(5) = .4. 

 
b. p(3) = .1, p(4) = .1, p(5) = .2, p(6) = .2, p(7) = .2, p(8) = .1, p(9) = .1. 

 
3.7 There are 33 = 27 ways to place the three balls into the three bowls.  Let Y = # of empty 

bowls.  Then: 
p(0) = P(no bowls are empty) = 27

6
27

!3 =   
p(2) = P(2 bowls are empty) = 27

3  
p(1) = P(1 bowl is empty) = 1 27

18
27
3

27
6 =−− . 

 
3.8 Note that the number of cells cannot be odd. 

p(0) = P(no cells in the next generation) = P(the first cell dies or the first cell 
splits and both die) = .1 + .9(.1)(.1) = 0.109 

p(4) = P(four cells in the next generation) = P(the first cell splits and both created 
cells split) = .9(.9)(.9) = 0.729. 

p(2) = 1 – .109 – .729 = 0.162. 
 

3.9 The random variable Y takes on vales 0, 1, 2, and 3. 
a. Let E denote an error on a single entry and let N denote no error.  There are 8 sample 
points: EEE, EEN, ENE, NEE, ENN, NEN, NNE, NNN.  With P(E) = .05 and P(N) = .95 
and assuming independence: 
P(Y = 3) = (.05)3 = 0.000125   P(Y = 2) = 3(.05)2(.95) = 0.007125 
P(Y = 1) = 3(.05)2(.95) = 0.135375  P(Y = 0) = (.95)3 = 0.857375. 
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b. The graph is omitted. 
c. P(Y > 1) = P(Y = 2) + P(Y = 3) = 0.00725. 
 

3.10 Denote R as the event a rental occurs on a given day and N denotes no rental.  Thus, the 
sequence of interest is RR, RNR, RNNR, RNNNR, … .  Consider the position immediately 
following the first R: it is filled by an R with probability .2 and by an N with probability 
.8.  Thus, P(Y = 0) = .2, P(Y = 1) = .8(.2) = .16, P(Y = 2) = .128, … .  In general, 

P(Y = y) = .2(.8)y, y = 0, 1, 2, … . 
 

3.11 There is a 1/3 chance a person has O+ blood and 2/3 they do not.  Similarly, there is a 
1/15 chance a person has O– blood and 14/15 chance they do not.  Assuming the donors 
are randomly selected, if X = # of O+ blood donors and Y = # of O– blood donors, the 
probability distributions are 

 
 0 1 2 3 
p(x) (2/3)3 = 8/27 3(2/3)2(1/3) = 12/27 3(2/3)(1/3)2 =6/27 (1/3)3 = 1/27
p(y) 2744/3375 196/3375 14/3375 1/3375 

 
Note that Z = X + Y = # will type O blood.  The probability a donor will have type O 
blood is 1/3 + 1/15 = 6/15 = 2/5.  The probability distribution for Z is 
 

 0 1 2 3 
p(z) (2/5)3 = 27/125 3(2/5)2(3/5) = 54/27 3(2/5)(3/5)2 =36/125 (3/5)3 = 27/125 

 
 

3.12 E(Y) = 1(.4) + 2(.3) + 3(.2) + 4(.1) = 2.0 
E(1/Y) = 1(.4) + 1/2(.3) + 1/3(.2) + 1/4(.1) = 0.6417 
E(Y2 – 1) = E(Y2) – 1 = [1(.4) + 22(.3) + 32(.2) + 42(.1)] – 1 = 5 – 1 = 4. 
V(Y) = E(Y2) = [E(Y)]2 = 5 – 22 = 1. 
 

3.13 E(Y) = –1(1/2) + 1(1/4) + 2(1/4) = 1/4 
E(Y2) = (–1)2(1/2) + 12(1/4) + 22(1/4) = 7/4 
V(Y) = 7/4 – (1/4)2 = 27/16. 
Let C = cost of play, then the net winnings is Y – C.  If E(Y – C) = 0, C = 1/4. 
 
 

3.14 a. μ = E(Y) = 3(.03) + 4(.05) + 5(.07) + … + 13(.01) = 7.9 
b. σ2 = V(Y) = E(Y2) – [E(Y)]2 = 32(.03) + 42(.05) + 52(.07) + … + 132(.01) – 7.92 = 67.14 
– 62.41 = 4.73.  So, σ = 2.17. 
c. (μ – 2σ, μ + 2σ) = (3.56, 12.24).  So, P(3.56 < Y < 12.24) = P(4 ≤ Y ≤ 12) = .05 + .07 + 
.10 + .14 + .20 + .18 + .12 + .07 + .03 = 0.96. 
 
 

3.15 a. p(0) = P(Y = 0) = (.48)3 = .1106, p(1) = P(Y = 1) = 3(.48)2(.52) = .3594, p(2) = P(Y = 
2) = 3(.48)(.52)2 = .3894, p(3) = P(Y = 3) = (.52)3 = .1406. 
b. The graph is omitted. 
c. P(Y = 1) = .3594. 
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d. μ = E(Y) = 0(.1106) + 1(.3594) + 2(.3894) + 3(.1406) = 1.56,  
σ2 = V(Y) = E(Y2) –[E(Y)]2 = 02(.1106) + 12(.3594) + 22(.3894) + 32(.1406) – 1.562 = 
3.1824 – 2.4336 = .7488.  So, σ = 0.8653. 
e. (μ – 2σ, μ + 2σ) = (–.1706, 3.2906).  So, P(–.1706 < Y < 3.2906) = P(0 ≤ Y ≤ 3) = 1. 

3.16 As shown in Ex. 2.121, P(Y = y) = 1/n for y = 1, 2, …, n.  Thus, E(Y) = ∑
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3.17 μ = E(Y) = 0(6/27) + 1(18/27) + 2(3/27) = 24/27 = .889 

σ2 = V(Y) = E(Y2) –[E(Y)]2 = 02(6/27) + 12(18/27) + 22(3/27) – (24/27)2 = 30/27 – 
576/729 = .321.  So, σ = 0.567 
For (μ – 2σ, μ + 2σ) = (–.245, 2.023).  So, P(–.245 < Y < 2.023) = P(0 ≤ Y ≤ 2) = 1. 
 

3.18 μ = E(Y) = 0(.109) + 2(.162) + 4(.729) = 3.24. 
 
3.19 Let P be a random variable that represents the company’s profit.  Then, P = C – 15 with 

probability 98/100 and P = C – 15 – 1000 with probability 2/100.  Then, 
E(P) = (C – 15)(98/100)  + (C – 15 – 1000)(2/100) = 50.  Thus, C = $85. 
 

3.20 With probability .3 the volume is 8(10)(30) = 2400.  With probability .7 the volume is 
8*10*40 = 3200.  Then, the mean is .3(2400) + .7(3200) = 2960. 

  
3.21 Note that E(N) = E(8πR2) = 8πE(R2).  So, E(R2) = 212(.05) + 222(.20) + … + 262(.05) = 

549.1.  Therefore E(N) = 8π(549.1) = 13,800.388. 
 
3.22 Note that p(y) = P(Y = y) = 1/6 for y = 1, 2, …, 6.  This is similar to Ex. 3.16 with n = 6.  

So, E(Y) = 3.5 and V(Y) = 2.9167. 
 
3.23 Define G to be the gain to a person in drawing one card.  The possible values for G are 

$15, $5, or $–4 with probabilities 3/13, 2/13, and 9/13 respectively.  So,  
E(G) = 15(3/13) + 5(2/13) – 4(9/13) = 4/13 (roughly $.31). 
 

3.24 The probability distribution for Y = number of bottles with serious flaws is: 
p(y) 0 1 2 

y .81 .18 .01
 
Thus, E(Y) = 0(.81) + 1(.18) + 2(.01) = 0.20 and V(Y) = 02(.81) + 12(.18) + 22(.01) – 
(.20)2 = 0.18. 
 

3.25 Let X1 = # of contracts assigned to firm 1; X2 = # of contracts assigned to firm 2.  The 
sample space for the experiment is {(I,I), (I,II), (I,III), (II,I), (II,II), (II,III), (III,I), (III,II), 
(III,III)}, each with probability 1/9.  So, the probability distributions for X1 and X2 are: 

x1 0 1 2  x2 0 1 2 
p(x1) 4/9 4/9 1/9  p(x2) 4/9 4/9 1/9 
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Thus, E(X1) = E(X2) = 2/3.  The expected profit for the owner of both firms is given by 
90000(2/3 + 2/3) = $120,000. 
 

 

3.26 The random variable Y = daily sales can have values $0, $50,000 and $100,000.   
If Y = 0, either the salesperson contacted only one customer and failed to make a sale or 
the salesperson contacted two customers and failed to make both sales.  Thus P(Y = 0) = 
1/3(9/10) + 2/3(9/10)(9/10) = 252/300.   
If Y = 2, the salesperson contacted to customers and made both sales.  So, P(Y = 2) = 
2/3(1/10)(1/10) = 2/300.   
Therefore, P(Y = 1) = 1 – 252/300 – 2/300 = 46/300. 
Then, E(Y) = 0(252/300) + 50000(46/300) + 100000(2/300) = 25000/3 (or $8333.33). 
V(Y) =380,561,111 and σ = $19,507.98. 
  

3.27 Let Y = the payout on an individual policy.  Then, P(Y = 85,000) = .001, P(Y = 42,500) = 
.01, and P(Y = 0) = .989.  Let C represent the premium the insurance company charges.  
Then, the company’s net gain/loss is given by C – Y.  If E(C – Y) = 0, E(Y) = C.  Thus, 
E(Y) = 85000(.001) + 42500(.01) + 0(.989) = 510 = C. 
 

3.28 Using the probability distribution found in Ex. 3.3, E(Y) = 2(1/6) + 3(2/6) + 4(3/6) = 
20/6.  The cost for testing and repairing is given by 2Y + 4.  So, E(2Y + 4) = 2(20/6) + 4 = 
64/6. 
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3.30 a. The mean of X will be larger than the mean of Y. 

b. E(X) = E(Y + 1) = E(Y) + 1 = μ + 1. 
c. The variances of X and Y will be the same (the addition of 1 doesn’t affect variability). 
d. V(X) = E[(X – E(X))2] = E[(Y + 1 – μ – 1)2] = E[(Y – μ)2] = σ2. 
 

3.31 a. The mean of W will be larger than the mean of Y if μ > 0.  If μ < 0, the mean of W will 
be smaller than μ.  If μ = 0, the mean of W will equal μ. 
b. E(W) = E(2Y) = 2E(Y) = 2μ. 
c. The variance of W will be larger than σ2, since the spread of values of W has increased. 
d. V(X) = E[(X – E(X))2] = E[(2Y – 2μ)2] = 4E[(Y – μ)2] = 4σ2.  

 
3.32 a. The mean of W will be smaller than the mean of Y if μ > 0.  If μ < 0, the mean of W 

will be larger than μ.  If μ = 0, the mean of W will equal μ. 
b. E(W) = E(Y/10) = (.1)E(Y) = (.1)μ. 
c. The variance of W will be smaller than σ2, since the spread of values of W has 
decreased. 
d. V(X) = E[(X – E(X))2] = E[(.1Y – .1μ)2] = (.01)E[(Y – μ)2] = (.01)σ2.  
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3.33 a. .)()()()( babYaEbEaYEbaYE +=+=+=+ μ   

b. .])[(])[(])[()( 222222 σμμμ aYEaaaYEbabaYEbaYV =−=−=−−+=+  
 
 

3.34 The mean cost is E(10Y) = 10E(Y) = 10[0(.1) + 1(.5) + 2(.4)] = $13.  Since V(Y) .41, 
V(10Y) = 100V(Y) = 100(.41) = 41. 

  
3.35 With FSSSB ∪= , P(B) = P(SS) + P(FS) = ( ) ( )4999

2000
5000
3000

4999
1999

5000
2000 +  = 0.4 

P(B|first trial success) = 4999
1999  = 0.3999, which is not very different from the above. 

 
3.36 a. The random variable Y does not have a binomial distribution.  The days are not 

independent. 
b. This is not a binomial experiment.  The number of trials is not fixed. 

 
3.37 a. Not a binomial random variable. 

b. Not a binomial random variable. 
c. Binomial with n = 100, p = proportion of high school students who scored above 1026. 
d. Not a binomial random variable (not discrete). 
e. Not binomial, since the sample was not selected among all female HS grads. 

 
3.38 Note that Y is binomial with n = 4, p = 1/3 = P(judge chooses formula B).   

a. p(y) = ( ) ( ) yy

y
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4
, y = 0, 1, 2, 3, 4.   

b. P(Y ≥ 3) = p(3) + p(4) = 8/81 + 1/81 = 9/81 = 1/9. 
c. E(Y) = 4(1/3) = 4/3. 
d. V(Y) = 4(1/3)(2/3) = 8/9 

 
3.39 Let Y = # of components failing in less than 1000 hours.  Then, Y is binomial with n = 4 

and p = .2. 

a. P(Y = 2) = 22 )8(.2.
2
4
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 = 0.1536. 

b. The system will operate if 0, 1, or 2 components fail in less than 1000 hours.  So, 
P(system operates) = .4096 + .4096 + .1536 = .9728. 

 
 
3.40 Let Y = # that recover from stomach disease.  Then, Y is binomial with n = 20 and p = .8.  

To find these probabilities, Table 1 in Appendix III will be used. 
a. P(Y ≥ 10) = 1 – P(Y ≤ 9) = 1 – .001 = .999. 
b. P(14 ≤ Y ≤ 18) = P(Y ≤ 18) – P(Y ≤ 13) – .931 – .087 = .844 
c. P(Y ≤ 16) = .589. 

 
3.41 Let Y = # of correct answers.  Then, Y is binomial with n = 15 and p = .2.  Using Table 1 

in Appendix III, P(Y ≥ 10) = 1 – P(Y ≤ 9) = 1 – 1.000 = 0.000 (to three decimal places). 
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3.42 a. If one answer can be eliminated on every problem, then, Y is binomial with n = 15 and 

p = .25.  Then, P(Y ≥ 10) = 1 – P(Y ≤ 9) = 1 – 1.000 = 0.000 (to three decimal places). 
 

b. If two answers can be (correctly) eliminated on every problem, then, Y is binomial 
with n = 15 and p = 1/3.  Then, P(Y ≥ 10) = 1 – P(Y ≤ 9) = 0.0085. 
 

3.43 Let Y = # of qualifying subscribers.  Then, Y is binomial with n = 5 and p = .7. 
a. P(Y = 5) = .75 = .1681 
b. P(Y ≥ 4) = P(Y = 4) + P(Y = 5) = 5(.74)(.3) + .75 = .3601 + .1681 = 0.5282. 

 
3.44 Let Y = # of successful operations.  Then Y is binomial with n = 5. 

a. With p = .8, P(Y = 5) = .85 = 0.328. 
b. With p = .6, P(Y = 4) = 5(.64)(.4) = 0.259. 
c. With p = .3, P(Y < 2) = P(Y = 1) + P(Y = 0) = 0.528. 

 
3.45 Note that Y is binomial with n = 3 and p = .8.  The alarm will function if Y = 1, 2, or 3.  

Thus, P(Y ≥ 1) = 1 – P(Y = 0) = 1 – .008 = 0.992. 
  
3.46 When p = .5, the distribution is symmetric.  When p < .5, the distribution is skewed to the 

left.  When p > .5, the distribution is skewed to the right. 
 

3.47 The graph is above. 
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3.48 a. Let Y = # of sets that detect the missile.   Then, Y has a binomial distribution with n = 5 

and p = .9.  Then,  P(Y = 4) = 5(.9)4(.1) = 0.32805 and  
P(Y ≥ 1) = 1 – P(Y = 0) = 1 – 5(.9)4(.1) = 0.32805.   

b. With n radar sets, the probability of at least one diction is 1 – (.1)n.  If 1 – (.1)n = .999, 
n = 3. 

 
3.49 Let Y = # of housewives preferring brand A.  Thus, Y is binomial with n = 15 and p = .5.   

a. Using the Appendix, P(Y ≥ 10) = 1 – P(Y ≤ 9) = 1 – .849 = 0.151. 
b. P(10 or more prefer A or B) = P(6 ≤ Y ≤ 9) = 0.302. 
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3.50 The only way team A can win in exactly 5 games is to win 3 in the first 4 games and then 

win the 5th game.  Let Y = # of games team A wins in the first 4 games.  Thus, Y has a 
binomial distribution with n = 4.  Thus, the desired probability is given by 

  P(Team A wins in 5 games) = P(Y = 3)P(Team A wins game 5) 

= ppp )1(
3
4 3 −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 = )1(4 4 pp − . 

 
 

3.51 a. P(at least one 6 in four rolls) = 1 – P(no 6’s in four rolls) = 1 – (5/6)4 = 0.51775. 
 

b. Note that in a single toss of two dice, P(double 6) = 1/36.  Then:  
P(at least one double 6 in twenty–four rolls) = 1 – P(no double 6’s in twenty–four rolls) = 

= 1 – (35/36)24 = 0.4914. 
 
3.52 Let Y = # that are tasters.  Then, Y is binomial with n = 20 and p = .7. 

a. P(Y ≥ 17) = 1 – P(Y ≤ 16) = 0.107. 
b. P(Y < 15) = P(Y ≤ 14) = 0.584. 

 
3.53 There is a 25% chance the offspring of the parents will develop the disease.  Then, Y = # 

of offspring that develop the disease is binomial with n = 3 and p =.25. 
a. P(Y = 3) = (.25)3 = 0.015625. 
b. P(Y = 1) = 3(.25)(.75)2 = 0.421875 
c. Since the pregnancies are mutually independent, the probability is simply 25%. 

 
3.54 a. and b. follow from simple substitution 

c. the classifications of “success” and “failure” are arbitrary. 
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 Equating this to E(Y3) – 3E(Y2) + 2E(Y), it is found that  
E(Y3) = .)2)(1()1(3 32 nppnnnpnn +−−−−  
 

3.56 Using expression for the mean and variance of Y = # of successful explorations, a 
binomial random variable with n = 10 and p = .1, E(Y) = 10(.1) = 1, and 
V(Y) = 10(.1)(.9) = 0.9. 

 
3.57 If Y = # of successful explorations, then 10 – Y is the number of unsuccessful 

explorations.  Hence, the cost C is given by C = 20,000 + 30,000Y + 15,000(10 – Y).  
Therefore, E(C) = 20,000 + 30,000(1) + 15,000(10 – 1) = $185,000. 

 
3.58 If Y is binomial with n = 4 and p = .1, E(Y) = .4 and V(Y) = .36.  Thus, E(Y2) = .36 + (.4)2 

= 0.52.  Therefore, E(C) = 3(.52) + (.36) + 2 = 3.96. 
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3.59 If Y = # of defective motors, then Y is binomial with n = 10 and p = .08.  Then, E(Y) = .8.  

The seller’s expected next gain is $1000 – $200E(Y) = $840. 
 
3.60 Let Y = # of fish that survive.  Then, Y is binomial with n = 20 and p = .8.  

a. P(Y = 14) = .109. 
b. P(Y ≥ 10) = .999. 
c. P(Y ≤ 16) = .589. 
d. μ = 20(.8) = 16, σ2 = 20(.8)(.2) = 3.2. 

 
3.61 Let Y = # with Rh+ blood.  Then, Y is binomial with n = 5 and p = .8 

a. 1 – P(Y = 5) = .672. 
b. P(Y ≤ 4) = .672. 
c. We need n for which P(Y ≥ 5) =  1 – P(Y ≤ 4) > .9.  The smallest n is 8. 

 
3.62 a. Assume independence of the three inspection events. 

b. Let Y = # of plane with wing cracks that are detected.  Then, Y is binomial with n = 3 
and p = .9(.8)(.5) = .36.  Then, P(Y ≥ 1) = 1 – P(Y = 0) = 0.737856. 

 
3.63 a. Found by pulling in the formula for p(y) and p(y – 1) and simplifying. 
 

b. Note that P(Y < 3) = P(Y ≤ 2) = P(Y = 2) + P(Y = 1) + P(Y = 0).  Now, P(Y = 0) = 
(.96)90 = .0254.  Then, P(Y = 1) = )0254(.)96(.1

04).1190( +−  = .0952 and P(Y = 2) = 

)0952(.)96(.2
04).1290( +−  = .1765.  Thus, P(Y < 3) = .0254 + .0952 + .1765 = 0.2971 

 

c. 1)1(
>

+−
yq
yn  is equivalent to yqyppn >−+ )1(  is equivalent to ypn >+ )1( .  The 

others are similar. 
 

d. Since for y ≤ (n + 1)p, then p(y) ≥ p(y – 1) > p(y – 2) > … .  Also, for y ≥ (n + 1)p, then 
p(y) ≥ p(y + 1) > p(y + 2) > … .  It is clear that p(y) is maximized when y is a close to  
(n + 1)p as possible. 

 
3.64 To maximize the probability distribution as a function of p, consider taking the natural 

log (since ln() is a strictly increasing function, it will not change the maximum).  By 
taking the first derivative of ln[p(y0)] and setting it equal to 0, the maximum is found to 
be y0/n. 

 
3.65 a. E(Y/n) = E(Y)/n = np/n = p. 

b. V(Y/n) = V(Y)/n2 = npq/n2 = pq/n.  This quantity goes to zero as n goes to infinity. 
 

3.66 a. 1
1

1
01

1 =
−

== ∑∑
∞

=

∞

=

−

q
pqppq

x

x

y

y  (infinite sum of a geometric series) 

b. .2

1

q
pq
pq

y

y

=−

−

  The event Y = 1 has the highest probability for all p, 0 < p < 1. 
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3.67 (.7)4(.3) = 0.07203. 
 
3.68 1/(.30) = 3.33. 
 
3.69 Y is geometric with p = 1 – .41 = .59.  Thus, )59(.)41(.)( 1−= yyp , y = 1, 2, … . 
 
3.70 Let Y = # of holes drilled until a productive well is found. 

a. P(Y = 3) = (.8)2(.2) = .128 
b. P(Y > 10) = P(first 10 are not productive) = (.8)10 = .107. 

 

3.71 a. ∑∑
∞

=

−
∞

+=

− ===>
1

1

1

1)(
x

axa

ay

y qpqqpqaYP . 

b. From part a, b
a

ba

q
q

q
aYP

baYP
aYP

aYbaYPaYbaYP ==
>
+>

=
>

>+>
=>+>

+

)(
)(

)(
),()|( . 

 
c. The results in the past are not relevant to a future outcome (independent trials). 
 
 

3.72 Let Y = # of tosses until the first head.  P(Y ≥ 12 | Y > 10) = P(Y > 11 | Y > 10) = 1/2. 
 
3.73 Let Y = # of accounts audited until the first with substantial errors is found. 

a. P(Y = 3) = .12(.9) = .009. 
b. P(Y ≥ 3) = P(Y > 2) = .12 = .01. 
 

3.74 μ = 1/.9 = 1.1, σ = 29.
9.1−  = .35 

  
3.75 Let Y = # of one second intervals until the first arrival, so that p = .1 

a. P(Y = 3) = (.9)2(.1) = .081. 
b. P(Y ≥ 3) = P(Y > 2) = .92 = .81. 

 
3.76 0)7(.)( 0

yyYP => ≥ .1.  Thus, y0 ≤ )7ln(.
)1ln(.  = 6.46, so y0 ≤ = 6. 

 
3.77 P(Y = 1, 3, 5, …) = P(Y = 1) + P(Y + 3) + P(Y = 5) + … = p + q2p + q4p + … =  

p[1 + q2 + q4 + …] = 21
1
q

p
−

.  (Sum an infinite geometric series in ( )kq2 .) 

 
3.78 a. (.4)4(.6) = .01536. 

b. (.4)4 = .0256. 
 
 

3.79 Let Y = # of people questioned before a “yes” answer is given.  Then, Y has a geometric 
distribution with p = P(yes) = P(smoker and “yes”) + P(nonsmoker and “yes”) = .3(.2) + 
0 = .06.  Thus, p(y) = .06(.94)y–1. y = 1, 2, … . 
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3.80 Let Y = # of tosses until the first 6 appears, so Y has a geometric distribution.  Using the 

result from Ex. 3.77,   

P(B tosses first 6) = P(Y = 2, 4, 6, …) = 1 – P(Y = 1, 3, 5, …) = 1 – 21
1
q

p
−

. 

Since p = 1/6, P(B tosses first 6) = 5/11.  Then, 

P(Y = 4 | B tosses the first 6) 
11/5

)6/1()6/5(
11/5

)4( 2

=
=YP  = 275/1296. 

 
3.81 With p = 1/2, then μ = 1/(1/2) = 2. 
 
3.82 With p = .2, then μ = 1/(.2) = 5.  The 5th attempt is the expected first successful well. 
 
3.83 Let Y = # of trials until the correct password is picked.  Then, Y has a geometric 

distribution with p = 1/n.  P(Y = 6) = ( ) .511
n

n
n

−  
 
3.84 E(Y) = n, V(Y) = ).1()1( 21 −=− nnnn  
 

3.85 Note that .)1( 2
2

2 −−= yy
dq
d qyyq   Thus, .)1(

2

2

2
2

2 ∑∑
∞

=

−
∞

=

−=
y

y

y

y
dq
d qyyq   Thus, 

E[Y(Y–1)] = ∑∑
∞

=

−
∞

=

− −=−
1

2

1

1 )1()1(
y

y

y

y qyypqqyy = ∑
∞

=2
2

2

y

y
dq
d qpq = 

⎭
⎬
⎫

⎩
⎨
⎧

−−
−

q
q

pq
dq
d 1

1
1

2

2  = 

23

2
)1(

2
p
q

q
pq

=
−

.  Use this with V(Y) = E[Y(Y–1)]  + E(Y) – [E(Y)]2. 

 
3.86 P(Y = y0) = .10 pq y −   Like Ex. 3.64, maximize this probability by first taking the natural 

log. 
  

3.87 p
pp

y
y
p

p
py

y
y

y

ppYE −

∞

=

−
−

−
∞

=

−==−= ∑∑ 1
)ln(

1

)1(
1

1

1

1 )1()/1( . 

 
3.88 pqpqyYPyYP yy ==+=== −+ 11* )1()( , y = 0, 1, 2, … . 
 
3.89 .11)()( 1* −=−= pYEYE   V(Y*) = V(Y – 1) = V(Y). 
 
3.90 Let Y = # of employees tested until three positives are found.  Then, Y is negative 

binomial with r = 3 and p = .4.  P(Y = 10) = 73 )6(.4.
2
9
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 = .06. 

 
3.91 The total cost is given by 20Y.  So, E(20Y) = 20E(Y) = 20 4.

3  = $50.  Similarly, V(20Y) = 
400V(Y) = 4500. 
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3.92 Let Y = # of trials until this first non–defective engine is found.  Then, Y is geometric 

with p = .9.  P(Y = 2) = .9(.1) = .09. 
 
3.93 From Ex. 3.92: 

a. P(Y = 5) = 23 )1(.)9(.
2
4
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 = .04374. 

b. P(Y ≤ 5) = P(Y = 3) + P(Y = 4) + P(Y = 5) = .729 + .2187 + .04374 = .99144. 
 
3.94 a. μ = 1/(.9) = 1.11, σ2 = (.1)/(.9)2 = .1234. 

b. μ = 3/(.9) = 3.33, σ2 = 3(.1)/(.9)2 = .3704. 
 
 

3.95 From Ex. 3.92 (and the memory–less property of the geometric distribution),  
P(Y ≥ 4 | Y > 2) = P(Y > 3 | Y > 2) = P(Y > 1) = 1 – P(Y = 0) = .1. 
 

3.96 a. Let Y = # of attempts until you complete your call.  Thus, Y is geometric with p = .4.  
Thus, P(Y = 1) = .4, P(Y = 2) = (.6).4 = .24, P(Y = 3) = (.6)2.4 = .144. 
b. Let Y = # of attempts until both calls are completed.  Thus, Y is negative binomial with 
r = 2 and p = .4.  Thus, P(Y = 4) = 3(.4)2(.6)2 = .1728. 
 

3.97 a. Geometric probability calculation: (.8)2(.2) = .128. 

b. Negative binomial probability calculation: 43 )8(.)2(.
2
6
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 = .049. 

 c. The trials are independent and the probability of success is the same from trial to trial. 
 
 d. μ = 3/.2 = 15, σ2 = 3(.8)/(.04) = 60. 
 

3.98 a. q
ry

y
qp
qp

yp
yp

ryr
ryr

y

ryr
ryr

y

−
−

==
− −−

−−−
−

−
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− 1
)1(

)(
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)!1()!1(
)!2(

)!()!1(
)!1(

 

b. If q
ry

y
−
−1  > 1, then yq – q > y – r or equivalently y

q
qr
>

−
−

1
.  The 2nd result is similar. 

c. If r = 7, p = .5 = q, then y
q
qr

>=
−
−

=
−
− 13

5.1
5.7

1
. 

 
3.99 Define a random variable X = y trials before the before the first success, y = r – 1, r, r + 1, 

… .  Then, X = Y – 1, where Y has the negative binomial distribution with parameters r 
and p.  Thus, p(x) = ryr

ryr
y qp −+

+−−
1

)!1()!1(
! , y = r – 1, r, r + 1, … . 

 

3.100 a. yrrryr qp
r

ry
qp

r
ry

ryYPyYP ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−+

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−+

=+=== −+

1
1

1
1

)()( * , y = 0, 1, 2, … . 

 
b. E(Y*) = E(Y) – r = r/p – r = r/q, V(Y*) = V(Y – r) = V(Y). 
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3.101 a. Note that P(Y = 11) = 65 )1(
4

10
pp −⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
.  Like Ex. 3.64 and 3.86, maximize this 

probability by first taking the natural log.  The maximum is 5/11. 
b. In general, the maximum is r/y0. 
 

3.102 Let Y = # of green marbles chosen in three draws.  Then. P(Y = 3) = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
3

10
3
5

 = 1/12. 

 
3.103 Use the hypergeometric probability distribution with N = 10, r = 4, n = 5.  P(Y = 0) = 42

1 .  
 
3.104 Define the events: A: 1st four selected packets contain cocaine 

B: 2nd two selected packets do not contain cocaine 
  

Then, the desired probability is P(A∩B) = P(B|A)P(A).  So, 

P(A) = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
4
20

4
15

 = .2817 and  P(B|A) = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2

16
2
5

 = .0833.  Thus, 

P(A∩B) = .2817(.0833) = 0.0235. 
 

3.105 a. The random variable Y follows a hypergeometric distribution.  The probability of being 
chosen on a trial is dependent on the outcome of previous trials. 
 

b. P(Y ≥ 2) = P(Y = 2) + P(Y = 3) = 7143.01786.5357.
3
8
3
5

3
8

1
3

2
5

=+=+
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

. 

c. μ = 3(5/8) = 1.875, σ2 = 3(5/8)(3/8)(5/7) = .5022, so σ = .7087. 
 
3.106  Using the results from Ex.103, E(50Y) = 50E(Y) = 50[5 ( )10

4 ] = $100.  Furthermore, 
V(50Y) = 2500V(Y) = 2500[5 ( )( )9

5
10
6

10
4 ] = 1666.67. 

  
3.107 The random variable Y follows a hypergeometric distribution with N = 6, n = 2, and r = 4.   
 
3.108 Use the fact that P(at least one is defective) = 1 – P(none are defective).  Then, we 

require P(none are defective) ≤ .2.  If  n = 8,  
P(none are defective) = ( )( )( )( )( )( )( )( )13

10
14
11

15
12

16
13

17
14

18
15

19
16

20
17  = 0.193. 

 
3.109 Let Y = # of treated seeds selected. 

a. P(Y = 4) = 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

4
10

0
5

4
5

 = .0238 

b. P(Y ≤ 3) = 1 – P(Y = 4) = 1 – 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

4
10

0
5

4
5

 = 1 – .0238 = .9762. 

c. same answer as part (b) above. 
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3.110 a. P(Y = 1) = 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

3
6

1
2

2
4

 = .6. 

b. P(Y ≥ 1) = p(1) + p(2) = 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
3
6

2
2

1
4

3
6

1
2

2
4

 = .8 

c. P(Y ≤ 1) = p(0) + p(1) = .8. 
 
 

3.111 a. The probability function for Y is p(y) = 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

3
10

3
82

yy , y = 0, 1, 2.  In tabular form, this is 

y 0 1 2 
p(y) 14/30 14/30 2/30

 

 b. The probability function for Y is p(y) = 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

3
10

3
64

yy , y = 0, 1, 2, 3.  In tabular form, this is 

 
 
 
3.112 Let Y = # of malfunctioning copiers selected.  Then, Y is hypergeometric with probability 

function 

p(y) = 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

4
8
4

53
yy , y = 0, 1, 2, 3. 

a. P(Y = 0) = p(0) = 1/14. 
b. P(Y ≥ 1) = 1 – P(Y = 0) = 13/14. 

 
3.113 The probability of an event as rare or rarer than one observed can be calculated according 

to the hypergeometric distribution,  Let Y = # of black members.  Then, Y is 

hypergeometric and P(Y ≤ 1) = 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
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⎝

⎛
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⎝

⎛
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⎝
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⎠

⎞
⎜⎜
⎝

⎛

+
6
20

6
12

0
8

6
20

5
12

3
8

 = .187.  This is nearly 20%, so it is not 

unlikely.   
 
3.114 μ = 6(8)/20 = 2.4, σ2 6(8/20)(12/20)(14/19) = 1.061. 
 
3.115 The probability distribution for Y is given by  
 

y 0 1 2 
p(y) 1/5 3/5 1/5

 
3.116 (Answers vary, but with n =100, the relative frequencies should be close to the 

probabilities in the table above.) 
 

y 0 1 2 3 
p(y) 5/30 15/30 9/30 1/30
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3.117 Let Y = # of improperly drilled gearboxes.  Then, Y is hypergeometric with N = 20, n = 5, 

and r = 2. 
a. P(Y = 0) = .553 
b. The random variable T, the total time, is given by T = 10Y + (5 – Y) = 9Y + 5.  Thus, 

E(T) = 9E(Y) + 5 = 9[5(2/20)] + 5 = 9.5. 
V(T) = 81V(T) = 81(.355) = 28.755, σ = 5.362. 
 

3.118 Let Y = # of aces in the hand.  Then. P(Y = 4 | Y ≥ 3) = 
)4()3(

)4(
=+=

=
YPYP

YP .  Note that Y 

is a hypergeometric random variable.  So, 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

==
5

52
2
48

3
4

)3(YP  = .001736 and 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

==
5

52
1
48

4
4

)4(YP  = .00001847.  Thus, P(Y = 4 | Y ≥ 3) = .0105. 

 
3.119 Let the event A = 2nd king is dealt on 5th card.  The four possible outcomes for this event 

are {KNNNK, NKNNK, NNKNK, NNNKK}, where K denotes a king and N denotes a 
non–king.  Each of these outcomes has probability: ( )( )( )( )( )48

3
49
46

50
47

51
48

52
4 .  Then, the desired 

probability is P(A) = 4 ( )( )( )( )( )48
3

49
46

50
47

51
48

52
4  = .016. 

 
3.120 There are N animals in this population.  After taking a sample of k animals, making and 

releasing them, there are N – k unmarked animals.  We then choose a second sample of 

size 3 from the N animals.  There are ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
3
N

 ways of choosing this second sample and 

there are ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
12
kkN

 ways of finding exactly one of the originally marked animals.  For 

k = 4, the probability of finding just one marked animal is  

P(Y = 1) = )2)(1(
)5)(4(12

3

1
4

2
4

−−
−−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

= NNN
NN

N

N

. 

Calculating this for various values of N, we find that the probability is largest for N = 11 
or N = 12 (the same probability is found: .503). 
 

3.121 a. P(Y = 4) = 2
!4

24 −e = .090. 
b. P(Y ≥ 4) = 1 – P(Y ≤ 3)  = 1 – .857 = .143 (using Table 3, Appendix III). 
c. P(Y < 4) = P(Y ≤ 3) = .857. 

d. P(Y ≥ 4 | Y ≥ 2) = 
)2(
)4(

≥
≥

YP
YP  = .143/.594 = .241 
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3.122 Let Y = # of customers that arrive during the hour.  Then, Y is Poisson with λ = 7. 

a. P(Y ≤ 3) = .0818. 
b. P(Y ≥ 2) = .9927. 
c. P(Y = 5) = .1277 

 
3.123 If p(0) = p(1), λλ λ −− = ee .  Thus, λ = 1.  Therefore, p(2) = 1

!2
12 −e  = .1839. 

 
3.124 Using Table 3 in Appendix III, we find that if Y is Poisson with λ = 6.6, P(Y ≤ 2) = .04.  

Using this value of λ, P(Y > 5) = 1 – P(Y ≤ 5) = 1 – .355 = .645. 
 
3.125 Let S = total service time = 10Y.  From Ex. 3.122, Y is Poisson with λ = 7.  Therefore, 

E(S) = 10E(Y) = 7 and V(S) = 100V(Y) = 700.  Also,  
P(S > 150) = P(Y > 15) = 1 – P(Y ≤ 15) = 1 – .998 = .002, and unlikely event. 

 
3.126 a. Let Y = # of customers that arrive in a given two–hour time.  Then, Y has a Poisson 

distribution with λ = 2(7) = 14 and P(Y = 2) = 14
!2

142 −e . 
 

b. The same answer as in part a. is found. 
 

3.127 Let Y = # of typing errors per page.  Then, Y is Poisson with λ = 4 and P(Y ≤ 4) = .6288. 
 
3.128 Note that over a one–minute period, Y = # of cars that arrive at the toll booth is Poisson 

with λ = 80/60 = 4/3.  Then, P(Y ≥ 1) = 1 – P(Y = 0) = 1 – e– 4/3 = .7364. 
 
3.129 Following the above exercise, suppose the phone call is of length t, where t is in minutes.  

Then, Y = # of cars that arrive at the toll booth is Poisson with λ = 4t/3.  Then, we must 
find the value of t such that 

P(Y = 0) = 1 – e–4t/3 ≥ .4. 
Therefore, t  ≤ – 4

3 ln(.6) = .383 minutes, or about .383(60) = 23 seconds. 
 
3.130 Define: Y1 = # of cars through entrance I, Y2 = # of cars through entrance II.  Thus, Y1 is 

Poisson with λ = 3 and Y2 is Poisson with λ = 4. 
 

Then, P(three cars arrive) = P(Y1 = 0, Y2 = 3) + P(Y1 = 1, Y2 = 2)+ P(Y1 = 2, Y2 = 1) +  
      +P(Y1 = 3, Y2 = 0).   

 
By independence, P(three cars arrive) = P(Y1 = 0)P(Y2 = 3) + P(Y1 = 1)P(Y2 = 2) 

  + P(Y1 = 2)P(Y2 = 1) + P(Y1 = 3)P(Y2 = 0). 
 Using Poisson probabilities, this is equal to 0.0521 
 
3.131 Let the random variable Y = # of knots in the wood.  Then, Y has a Poisson distribution 

with λ = 1.5 and P(Y ≤ 1) = .5578. 
 
3.132 Let the random variable Y = # of cars entering the tunnel in a two–minute period.  Then, 

Y has a Poisson distribution with λ = 1 and P(Y > 3) = 1 – P(Y  ≤ 3) = 0.01899. 
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3.133 Let X = # of two–minute intervals with more than three cars.  Therefore, X is binomial 

with n = 10 and p = .01899 and P(X ≥ 1) = 1 – P(X = 0) = 1 – (1–.01899)10 = .1745.  
 
3.134  The probabilities are similar, even with a fairly small n. 
 
 
 
 
 
 
 
 
3.135 Using the Poisson approximation, λ ≈ np = 100(.03) = 3, so P(Y ≥ 1) = 1 – P(Y = 0) = 

.9524. 
 
3.136 Let Y = # of E. coli cases observed this year.  Then, Y has an approximate Poisson 

distribution with λ ≈ 2.4. 
a. P(Y ≥ 5) = 1 – P(Y ≤ 4) = 1 – .904 = .096. 
b. P(Y > 5) = 1 – P(Y ≤ 5) = 1 – .964 = .036.  Since there is a small probability 

associated with this event, the rate probably has charged. 
 
3.137 Using the Poisson approximation to the binomial with λ ≈ np = 30(.2) = 6.   

Then, P(Y ≤ 3) = .1512. 
 

3.138 ∑∑
∞
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∞
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λ− λ−−λ−
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)]1([
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y
eyy

y
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eyy yy

YYE .  Using the substitution z = y – 2, it is found 

that E[Y(Y – 1)] = λ2.  Use this with V(Y) = E[Y(Y–1)] + E(Y) – [E(Y)]2 = λ. 
 
3.139 Note that if Y is Poisson with λ = 2, E(Y) = 2 and E(Y2) = V(Y) + [E(Y)]2 = 2 + 4 = 6.  So, 

E(X) = 50 – 2E(Y) – E(Y2) = 50 – 2(2) – 6 = 40. 
 

3.140 Since Y is Poisson with λ = 2, E(C) = ( )[ ] ( ) 1

1
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3.141 Similar to Ex. 3.139: E(R) = E(1600 – 50Y2) = 1600 – 50(6) = $1300. 
 

3.142 a. ...,2,1,
)!1(

!
)1(

)(
1 === λ

−
λ

λ

− λ−−

λ−

yy
y

e

y
e

yp
yp

y

y

 

b. Note that if λ > y, p(y) > p(y – 1).  If λ > y, p(y) > p(y – 1).  If λ = y for some integer y, 
p(y) = p(y – 1). 
c. Note that for λ a non–integer, part b. implies that for y – 1 < y < λ,  

p(y – 1) < p(y) > p(y + 1). 
Hence, p(y) is maximized for y = largest integer less than λ.  If λ is an integer, then p(y) is 
maximized at both values λ – 1 and λ. 
 

y p(y), exact binomial p(y), Poisson approximation 
0 .358 .368 
1 .378 .368 
2 .189 .184 
3 .059 .061 
4 .013 .015 
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3.143 Since λ is a non–integer, p(y) is maximized at y = 5. 
 
3.144 Observe that with λ = 6, p(5) = 1606.!5

6 65 =−e , p(6) = 1606.!6
6 66 =−e . 

 

3.145 Using the binomial theorem, .)()()()(
0

ntynyt
n

y

tY qpeqpe
y
n

eEtm +=⎟⎟
⎠

⎞
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== −

=
∑  

 
3.146 tnt

dt
d peqpentm 1)()( −+= .  At t = 0, this is np = E(Y). 

 
tnttnt

dt
d peqpenpeqpenntm 121 )()())(1()(2

2 −− +++−= .  At t = 0, this is np2(n – 1) + np. 
Thus, V(Y) = np2(n – 1) + np – (np)2 = np(1 – p). 

 

3.147 The moment–generating function is .
1
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∞
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3.148 2)1(
)( t

t

dt
d

qe
petm
−

= .  At t = 0, this is 1/p = E(Y). 

 

4

2

)1(
))(1(2)1()(2

2

t

ttttt

dt
d

qe
qeqepepeqetm

−
−−−−

= .  At t = 0, this is (1+q)/p2. 

Thus, V(Y) = (1+q)/p2 – (1/p)2 = q/p2. 
 
3.149 This is the moment–generating function for the binomial with n = 3 and p = .6. 
 
3.150 This is the moment–generating function for the geometric with p = .3. 
 
3.151 This is the moment–generating function for the binomial with n = 10 and p = .7, so  

P(Y ≤ 5) = .1503. 
 
3.152 This is the moment–generating function for the Poisson with λ = 6.  So, μ = 6 and σ = 

6  ≈ 2.45.  So, P(|Y – μ| ≤ 2σ) = P(μ –  2σ ≤ Y ≤ μ + 2σ) = P(1.1 ≤ Y ≤ 10.9) =  
P(2 ≤ Y ≤ 10) = .940. 
 

3.153 a. Binomial with n = 5, p = .1 
b. If m(t) is multiplied top and bottom by ½, this is a geometric mgf with p = ½. 
c. Poisson with λ = 2. 
 

3.154 a. Binomial mean and variance: μ = 1.667, σ2 = 1.111. 
b. Geometric mean and variance: μ = 2, σ2 = 2. 
c. Poisson mean and variance: μ = 2, σ2 = 2. 
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3.155 Differentiate to find the necessary moments: 

a. E(Y) = 7/3. 
b. V(Y) = E(Y2) – [E(Y)]2 = 6 – (7/3)2 = 5/9. 
c. Since ).()( tYeEtm = Y can only take on values 1, 2, and 3 with probabilities 1/6, 2/6, 

and 3/6. 
 
3.156 a. 1)1()()0( 0 === EeEm Y . 

b. )3()()()()( )3(3 tmeEeEeEtm YtYttW
W ==== . 

c. )()()()()( 22)2( tmeeeEeEeEtm ttYtYttX
X

−−− ==== . 
 

3.157 a. From part b. in Ex. 3.156, the results follow from differentiating to find the necessary 
moments. 
b. From part c. in Ex. 3.156, the results follow from differentiating to find the necessary 
moments. 
 

3.158 The mgf for W is )()()()()( )()( atmeeeEeEeEtm btYatbtbaYttW
W ==== + . 

 
3.159 From Ex. 3.158, the results follow from differentiating the mgf of W to find the necessary 

moments. 
 
3.160 a. E(Y*) = E(n – Y) = n – E(Y) = n – np = n(1 – p) = nq.  V(Y*) = V(n – Y) = V(Y) = npq. 
 

b. .)()()()()()( )()(*

*
ntntYtntYnttY

Y
qpetmeeeEeEeEtm +=−==== −−  

 
c. Based on the moment–generating function, Y* has a binomial distribution. 
 
d. The random variable Y* = # of failures. 
 
e. The classification of “success” and “failure” in the Bernoulli trial is arbitrary. 
 

3.161 .)()()()()(
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3.162 Note that )(
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3.163 Note that r(t) = 5(et – 1).  Then, tetr 5)()1( = and  tetr 5)()2( = .  So, λμ === 5)0()1(r  

and λσ === 2)2( 5)( tetr . 
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3.164 For the binomial, nyny
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3.165 For the Poisson, )1(
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E[Y(Y – 1)] = E(Y2) – E(Y).  Thus, V(Y) = λ. 
 
3.166 E[Y(Y – 1)(Y – 2)] = 3

1
)1(3

1)(3

3 λλ λ == =
−

= t
t

tdt
d etP = E(Y3) – 3E(Y2) + 2E(Y).  Therefore, 

E(Y3) = λ3 + 3(λ2 + λ) – 2λ = λ3 + 3λ2 + λ. 
 
3.167 a. The value 6 lies (11–6)/3 = 5/3 standard deviations below the mean.  Similarly, the 

value 16 lies (16–11)/3 = 5/3 standard deviations above the mean.  By Tchebysheff’s 
theorem, at least 1 – 1/(5/3)2 = 64% of the distribution lies in the interval 6 to 16. 

 
b. By Tchebysheff’s theorem, .09 = 1/k2, so k = 10/3.  Since σ = 3, kσ = (10/3)3 = 10 = C. 

 
3.168 Note that Y has a binomial distribution with n = 100 and p = 1/5 = .2 

a. E(Y) = 100(.2) = 20. 
b. V(Y) = 100(.2)(.8) = 16, so σ = 4. 
c. The intervals are 20 ± 2(4) or (12, 28), 20 + 3(4) or (8, 32). 
d. By Tchebysheff’s theorem, 1 – 1/32 or approximately 89% of the time the number of 

correct answers will lie in the interval (8, 32).  Since a passing score of 50 is far from 
this range, receiving a passing score is very unlikely. 

 
3.169 a. E(Y) = –1(1/18) + 0(16/18) + 1(1/18) = 0.  E(Y2) = 1(1/18) + 0(16/18) + 1(1/18) = 2/18 

= 1/9.  Thus, V(Y) = 1/9 and σ = 1/3. 
 

b. P(|Y – 0| ≥ 1) = P(Y = –1) + P(Y = 1) = 1/18 + 1/18 = 2/18 = 1/9.  According to 
Tchebysheff’s theorem, an upper bound for this probability is 1/32 = 1/9. 
 
c. Example: let X have probability distribution p(–1) = 1/8, p(0) = 6/8, p(1) = 1/8.  Then, 
E(X) = 0 and V(X) = 1/4. 
 
d. For a specified k, assign probabilities to the points –1, 0, and 1 as p(–1) = p(1) = 22

1
k

 
and p(0) = 1 – k

1 . 
 

3.170 Similar to Ex. 3.167: the interval (.48, 52) represents two standard deviations about the 
mean.  Thus, the lower bound for this interval is 1 – ¼ = ¾.  The expected number of 
coins is 400(¾) = 300. 
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3.171 Using Tchebysheff’s theorem, 5/9 = 1 – 1/k2, so k = 3/2.  The interval is 100 ± (3/2)10, or 

85 to 115. 
 
3.172 From Ex. 3.115, E(Y) = 1 and V(Y) = .4.  Thus, σ = .63.  The interval of interest is 1 ± 

2(.63), or (–.26, 2.26).  Since Y can only take on values 0, 1, or 2, 100% of the values 
will lie in the interval.  According to Tchebysheff’s theorem, the lower bound for this 
probability is 75%. 

 
3.173 a. The binomial probabilities are p(0) = 1/8, p(1) = 3/8, p(2) = 3/8, p(3) = 1/8. 
 

b. The graph represents a symmetric distribution. 
 
c. E(Y) = 3(1/2) = 1.5, V(Y) = 3(1/2)(1/2) = .75.  Thus, σ = .866. 
 
d. For one standard deviation about the mean: 1.5 ± .866 or (.634, 2.366) 
This traps the values 1 and 2, which represents 7/8 or 87.5% of the probability.  This is 
consistent with the empirical rule. 
For two standard deviations about the mean:  1.5 ± 2(.866) or (–.232, 3.232) 
This traps the values 0, 1, and 2, which represents 100% of the probability.  This is 
consistent with both the empirical rule and Tchebysheff’s theorem. 
 

3.174 a. (Similar to Ex. 3.173) the binomial probabilities are p(0) = .729, p(1) = .243, p(2) = 
.027, p(3) = .001. 

 
b. The graph represents a skewed distribution. 
 
c. E(Y) = 3(.1) = .3, V(Y) = 3(.1)(.9) = .27.  Thus, σ = .520. 
 
d. For one standard deviation about the mean: .3 ± .520 or (–.220, .820) 
This traps the value 1, which represents 24.3% of the probability.  This is not consistent 
with the empirical rule. 
For two standard deviations about the mean:  .3 ± 2(.520) or (–.740, 1.34) 
This traps the values 0 and 1, which represents 97.2% of the probability.  This is 
consistent with both the empirical rule and Tchebysheff’s theorem. 
 

3.175 a. The expected value is 120(.32) = 38.4 
b. The standard deviation is )68)(.32(.120 = 5.11. 
c. It is quite likely, since 40 is close to the mean 38.4 (less than .32 standard deviations 
away). 
 

3.176 Let Y represent the number of students in the sample who favor banning clothes that 
display gang symbols.  If the teenagers are actually equally split, then E(Y) = 549(.5) = 
274.5 and V(Y) = 549(.5)(.5) = 137.25.  Now. Y/549 represents the proportion in the 
sample who favor banning clothes that display gang symbols, so E(Y/549) = .5 and 
V(Y/549) = .5(.5)/549 = .000455.  Then, by Tchebysheff’s theorem, 

P(Y/549 ≥ .85) ≤ P(|Y/549 – .5| ≥ .35) ≤ 1/k2, 
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where k is given by kσ = .35.  From above, σ = .02134 so k = 16.4 and 1/(16.4)2 = .0037.  
This is a very unlikely result.  It is also unlikely using the empirical rule.  We assumed 
that the sample was selected randomly from the population. 

   
3.177 For C = 50 + 3Y, E(C) = 50 + 3(10) = $80 and V(C) = 9(10) = 90, so that σ = 9.487.  

Using Tchebysheff’s theorem with k = 2, we have P(|Y – 80| < 2(9.487)) ≥ .75, so that the 
required interval is (80 – 2(9.487), 80 + 2(9.487)) or (61.03, 98.97). 

  
3.178 Using the binomial, E(Y) = 1000(.1) = 100 and V(Y) = 1000(.1)(.9) = 90.  Using the result 

that at least 75% of the values will fall within two standard deviation of the mean, the 
interval can be constructed as 100 ± 2 90 , or (81, 119). 

 
3.179 Using Tchebysheff’s theorem, observe that 

2
1)|(|)()(

k
kYPkYPkYP ≤σ≥μ−≤σ≥μ−=σ+μ≥ . 

Therefore, to find P(Y ≥ 350) ≤ 1/k2, we solve 150 + k(67.081) = 350, so k = 2.98.  Thus, 
P(Y ≥ 350) ≤ 1/(2.98)2 = .1126, which is not highly unlikely. 
 

3.180 Number of combinations = 26(26)(10)(10)(10)(10) = 6,760,000.  Thus, 
E(winnings) = 100,000(1/6,760,000) + 50,000(2/6,760,000) + 1000(10/6,760,000) = 
$.031, which is much less than the price of the stamp. 

 

3.181 Note that P(acceptance) = P(observe no defectives) = 50

0
5

qp⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
.  Thus: 

p = Fraction defective P(acceptance)
0 1 

.10 .5905 

.30 .1681 

.50 .0312 
1.0 0 

 
  

3.182 OC curves can be constructed using points given in the tables below. 

a. Similar to Ex. 3.181: P(acceptance) = 100

0
10

qp⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
.  Thus, 

p 0 .05 .10 .30 .50 1 
P(acceptance) 1 .599 .349 .028 .001 0 

 

 b. Here, P(acceptance) = 91100

1
10

0
10

qpqp ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
.  Thus, 

 
p 0 .05 .10 .30 .50 1 

P(acceptance) 1 .914 .736 .149 .01 0 
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 c. Here, P(acceptance) = 8291100

2
10

1
10

0
10

qpqpqp ⎟⎟
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⎝

⎛
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+⎟⎟

⎠

⎞
⎜⎜
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⎛
.  Thus, 

 
p 0 .05 .10 .30 .50 1 

P(acceptance) 1 .988 .930 .383 .055 0 
 
 
3.183 Graph the two OC curves with n = 5 and a = 1 in the first case and n = 25 and a = 5 in the 

second case. 
 

a. By graphing the OC curves, it is seen that if the defectives fraction ranges from p = 0 
to p = .10, the seller would want the probability of accepting in this interval to be a 
high as possible.  So, he would choose the second plan. 

b. If the buyer wishes to be protected against accepting lots with a defective fraction 
greater than .3, he would want the probability of acceptance (when p > .3) to be as 
small as possible.  Thus, he would also choose the second plan. 

0.0 0.2 0.4 0.6 0.8 1.0
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The above graph illustrates the two OC curves.  The solid lie represents the first case and the 
dashed line represents the second case. 
  
3.184 Let Y = # in the sample who favor garbage collect by contract to a private company.  

Then, Y is binomial with n = 25. 
a. If p = .80, P(Y ≥ 22) = 1 – P(Y ≤ 21) = 1 – .766 = .234, 
b. If p = .80, P(Y = 22) = .1358. 
c. There is not strong evidence to show that the commissioner is incorrect. 

 
3.185 Let Y = # of students who choose the numbers 4, 5, or 6.  Then, Y is binomial with n = 20 

and p = 3/10. 
a. P(Y ≥ 8) = 1 – P(Y ≤ 7) = 1 – .7723 = .2277. 
b. Given the result in part a, it is not an unlikely occurrence for 8 students to choose 4, 5 

or 6. 
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3.186 The total cost incurred is W = 30Y.  Then, 

E(W) = 30E(Y) = 30(1/.3) = 100, V(W) = 900V(Y) = 900(.7/.32) = 7000. 
Using the empirical rule, we can construct a interval of three standard deviations about 
the mean: 100 ± 3 7000 , or (151, 351). 
 

3.187 Let Y = # of rolls until the player stops.  Then, Y is geometric with p = 5/6. 
a. P(Y = 3) = (1/6)2(5/6) = .023. 
b. E(Y) = 6/5 = 1.2. 
c. Let X = amount paid to player.  Then, X = 2Y–1. 
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this is $1.25. 

3.188 The result follows from 
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3.189 The random variable Y = # of failures in 10,000 starts is binomial with n = 10,000 and  

p = .00001.  Thus, P(Y ≥ 1) = 1 – P(Y = 0) = 1 – (.9999)10000 = .09516.   
Poisson approximation: 1 – e–.1 = .09516. 

 
3.190 Answers vary, but with n = 100, y  should be quite close to μ = 1. 
 
3.191 Answers vary, but with n = 100, s2 should be quite close to σ2 = .4. 
 
3.192 Note that p(1) = p(2) = … p(6) = 1/6.  From Ex. 3.22, μ = 3.5 and σ2 = 2.9167.  The 

interval constructed of two standard deviations about the mean is (.08, 6.92) which 
contains 100% of the possible values for Y. 

 
3.193 Let Y1 = # of defectives from line I, Y2 is defined similarly.  Then, both Y1 and Y2 are 

binomial with n = 5 and defective probability p.  In addition, Y1 + Y2 is also binomial with 
n = 10 and defective probability p.  Thus, 
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Notice that the probability does not depend on p. 
 
 

3.194 The possible outcomes of interest are: 
WLLLLLLLLLL, LWLLLLLLLLL, LLWLLLLLLLL 

So the desired probability is .1(.9)10 + .9(.1)(.9)9 + (.9)2(.1)(.9)8 = 3(.1)(.9)10 = .104. 
 
 
 



54                                                                Chapter 3: Discrete Random Variables and Their Probability Distributions  
Instructor’s Solutions Manual 
 
3.195 Let Y = # of imperfections in one–square yard of weave.  Then, Y is Poisson with λ = 4. 

a. P(Y ≥ 1) = 1 – P(Y = 0) = 1 – e–4 = .982. 
b. Let W = # of imperfections in three–square yards of weave.  Then, W is Poisson with 

λ = 12.  P(W ≥ 1) = 1 – P(W = 0) = 1 – e–12.   
 
3.196 For an 8–square yard bolt, let X = # of imperfections so that X is Poisson with λ = 32.  

Thus, C = 10X is the cost to repair the weave and  
E(C) = 10E(X) = $320 and V(C) = 100V(X) = 3200. 

  
3.197 a. Let Y = # of samples with at least one bacteria colony.  Then, Y is binomial with n = 4 

and p = P(at least one bacteria colony) = 1 – P(no bacteria colonies) = 1 – e–2 = .865 (by 
the Poisson).  Thus, P(Y ≥ 1) = 1 – P(Y = 0) = 1 – (.135)4 = .9997. 

 
b. Following the above, we require 1 – (.135)n = .95 or (.135)n = .05.  Solving for n, we 
have )135ln(.

)05ln(.=n  = 1.496, so take n = 2. 
 

3.198 Let Y = # of neighbors for a seedling within an area of size A.  Thus, Y is Poisson with λ = 
A*d, where for this problem d = 4 per square meter. 
a. Note that “within 1 meter” denotes an area A = π(1 m)2 = π m2.  Thus, P(Y = 0) = e–4π. 
b. “Within 2 meters” denotes an area A = π(2 m)2 = 4π m2.  Thus,  

P(Y ≤ 3) = P(Y = 0) + P(Y = 1) + P(Y = 2) + P(Y = 3) = ∑
=

−
3

0
!

)16( 16

y
y

ey ππ . 

 
3.199 a. Using the binomial model with n = 1000 and p = 30/100,000, let λ ≈ np = 

1000(30/100000) = .300 for the Poisson approximation.   
 

b. Let Y = # of cases of IDD.  P(Y ≥ 2) = 1 – P(Y = 0) – P(Y = 1) = 1 – .963 = .037. 
 
 

3.200 Note that 
[ ] [ ]nttnttnt pppttpqpeq )1)1()( !3!2!3!2

3232 "" ++++=+++++=+ . 
 
Expanding the above multinomial (but only showing the first three terms gives 
 

[ ] "++−++=+ −− 2
!2

21 1)1(1)(1)( 2 ntnnnt nppnntnppeq  
 

The coefficients agree with the first and second moments for the binomial distribution. 
 

3.201 From Ex. 103 and 106, we have that μ = 100 and σ = 67.1666  = 40.825.  Using an 
interval of two standard deviations about the mean, we obtain 100 ± 2(40.825) or  
(18.35, 181.65) 
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3.202 Let W = # of drivers who wish to park and W′ = # of cars, which is Poisson with mean λ.  

a. Observe that 

P(W = k) = 
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    = p
k

e
k
p λ−λ
!
)( , k = 0, 1, 2, … . 

Thus, P(W = 0) = pe λ− . 
 
b. This is a Poisson distribution with mean λp. 
 

3.203 Note that Y(t) has a negative binomial distribution with parameters r = k, p = e–λt. 
a. E[Y(t)] = keλt, V[Y(t)] = )( 2)1(

2
tt

e
ek eekt

t λλ− −=λ−

λ−

. 
 

b. With k = 2, λ = .1, E[Y(5)] = 3.2974, V[Y(5)] = 2.139. 
 
3.204 Let Y = # of left–turning vehicles arriving while the light is red.  Then, Y is binomial with 

n = 5 and p = .2.  Thus, P(Y ≤ 3) = .993. 
 
3.205 One solution: let Y = # of tosses until 3 sixes occur.  Therefore, Y is negative binomial 

where r = 3 and p = 1/6.  Then, P(Y = 9) = ( ) ( ) 0434127.
2
8 6

6
53

6
1 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
.  Note that this 

probability contains all events where a six occurs on the 9th toss.  Multiplying the above 
probability by 1/6 gives the probability of observing 4 sixes in 10 trials, where a six 
occurs on the 9th and 10th trial: (.0424127)(1/6) = .007235. 

 
3.206 Let Y represent the gain to the insurance company for a particular insured driver and let P 

be the premium charged to the driver.  Given the information, the probability distribution 
for Y is given by: 

y p(y) 
P .85 

P – 2400 .15(.80) = .12 
P – 7200 .15(.12) = .018

P – 12,000 .15(.08) = .012
  

If the expected gain is 0 (breakeven), then: 
E(Y) = P(.85) + (P – 2400).12 + (P – 7200).018 + (P – 12000).012 = 0, so P = $561.60. 

 
3.207 Use the Poisson distribution with λ = 5. 

a. p(2) = .084, P(Y ≤ 2) = .125. 
b. P(Y > 10) = 1 – P(Y ≤ 10) = 1 – .986 = .014, which represents an unlikely event. 
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3.208 If the general public was split 50–50 in the issue, then Y = # of people in favor of the 

proposition is binomial with n = 2000 and p = .5.  Thus,  
 

E(Y) = 2000(.5) = 1000 and V(Y) = 2000(.5)(.5) = 500. 
 
Since σ = 500  = 22.36, observe that 1373 is (1373 – 1000)/22.36 = 16.68 standard 
deviations above the mean.  Such a value is unlikely. 
 

3.209 Let Y = # of contracts necessary to obtain the third sale.  Then, Y is negative binomial 
with r = 3, p = .3.  So, P(Y < 5) = P(Y = 3) + P(Y = 4) = .33 + 3(.3)3(.7) = .0837. 

 
3.210 In Example 3.22, λ = μ = 3 and σ2 = 3 and that σ = 3  = 1.732.  Thus, 

)464.6464.())732.1(2|3(| ≤≤−=≤− YPYP  = P(Y ≤ 6) = .966.  This is consistent with 
the empirical rule (approximately 95%). 
 

3.211 There are three scenarios: 
• if she stocks two items, both will sell with probability 1.  So, her profit is $.40. 
• if she stocks three items, two will sell with probability .1 (a loss of .60) and three 

will sell with probability .9.  Thus, her expected profit is (–.60).1 + .60(.9) = $.48. 
• if she stocks four items, two will sell with probability .1 (a loss of 1.60), three will 

sell with probability .4 (a loss of .40), and four will sell with probability .5 (a gain 
of .80.  Thus, her expected profit is (–1.60).1 + (–.40).4 + (.80).5 = $.08 

 
So, to maximize her expected profit, stock three items. 
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first bracketed part, each quotient in parentheses has a limiting value of p.  There are y 
such quotients.  In the second bracketed part, each quotient in parentheses has a limiting 
value of 1 – p = q.  There are n – y such quotients,  Thus, 
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3.213 a. The probability is p(10) = 
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 = .1192 (found by dhyper(10, 40, 60, 20) in R). 

b. The binomial approximation is ( ) 1010
!10!10

!20 )6(.4.  = .117, a close value to the above 
(exact) answer. 
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3.214 Define:  A = accident next year  B = accident this year  C = safe driver 
 

Thus, P(C) = .7, P(A|C) = .1 = P(B|C), and 5.)|()|( == CBPCAP .  From Bayes’ rule, 

P(C|B) = 
)3(.5.)7(.1.

)7(.1.
)()|()()|(

)()|(
+

=
+ CPCBPCPCBP

CPCBP  = 7/22. 

 
Now, we need P(A|B).  Note that since ,SCC =∪  this conditional probability is equal to 
 

)|()|()|()|()|)(( BCAPBCAPBCAPBCAPBCCAP ∩+=∩+∩=∪∩ ∩ , or 
)|()|()|()|()|( BCAPBCPBCAPBCPBAP ∩+∩=  = 7/22(.1) + 15/22(.5) = .3727. 

 
So, the premium should be 400(.3727) = $149.09. 
 

3.215 a. Note that for (2), there are two possible values for N2, the number of tests performed: 1 
and k + 1.  If N2 = 1, all of the k people are healthy and this probability is (.95)k.  Thus, 
P(N2 = k + 1) = 1 – (.95)k.  Thus, E(N2) = 1(.95)k + (k + 1)(1 – .95k) = 1 + k(1 – .95k). 
This expectation holds for each group, so that for n groups the expected number of tests 
is n[1 + k(1 – .95k)]. 
 
 
b. Writing the above as g(k) = k

N [1 + k(1 – .95k)], where n = k
N , we can minimize this 

with respect to k.  Note that g′(k) = 2
1
k

 + (.95k)ln(.95), a strictly decreasing function.  
Since k must be an integer, it is found that g(k) is minimized at k = 5 and g(5) = .4262. 
 
c. The expected number of tests is .4262N, compared to the N tests is (1) is used.  The 
savings is then N – .4262N = .5738N. 
 

3.216 a. P(Y = n) = )1()2)(1(
)1()2)(1(

)!(
)!(

!
!

+−−−
+−−−

−
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=×= nNNNN
nrrrr

nr
nN

N
r

n
N

nn
rN

n
r

"
" . 

b. Since for integers a > b, ba
b

b
a
b
a

−
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

= 1

1

, apply this result to find that 

yn
ynrN

yr
y

ryp
ryp

−
+++−

−
+

+ ⋅= 11
)|1(

)|( 1

11

1  and yn
ynrN

yr
y

ryp
ryp

−
+++−

−
+

+ ⋅= 11
)|1(

)|( 21

22

2 . 
 

With r1 < r2, it follows that )|1(
)|1(

)|(
)|(

2

1

21

1
ryp
ryp

ryp
ryp

+
+> . 

 

c. Note that from the binomial theorem, k
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d. The result follows from part c above. 
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the hypergeometric distribution can also be calculated. 
 


