Chapter 4: Continuous Variables and Their Probability Distributions

0 y<l1
4 1<y<2
4.1 a. F(y)=P(Y <y)=<.7 2<y<3
9 3<y<4
1 y>4

1.0

F(y)
0.6
|

0.4

0.2

0.0

b. The graph is above.
42 a.p(l)=.2,pR2)=(1/4)4/5=.2,p3) = (1/3)(3/4)(4/5) = 2., p(4) = .2, p(5) = .2.

0 y<l1
2 1<y<2
b. F(y)=P(Y <y)={ & 25V
6 3<y<4
8 4<y<5
1 y=5

C.P(Y<3)=F(2)=4,P(Y<3)=.6,P(Y=3)=p(3) = .2

d. No, since Y is a discrete random variable.
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F(y)

4.3  a. The graph is above.
b. It is easily shown that all three properties hold.
4.4 A binomial variable with n = 1 has the Bernoulli distribution.

45 Fory=2,3,...Fy)—F@y-1)=PY<y)—PY <y-1)=P(Y=y)=p(y). Also,
F(1)=P(Y<1)=P(Y =1)=p(1).

46 a F(i)=P(Y<i)=1-P(Y>i)=1-P(1*i trials are failures) =1 —q".
b. It is easily shown that all three properties hold.
47 aP2=<Y<5)=PY<4)-P(Y<1)=.967-.376=0.591
P2<Y<5)=P(Y<4)-P(Y<2)=.967—-.678 = .289.
Y is a discrete variable, so they are not equal.
b.P2<Y<5)=P(Y<5)-P(Y<1)=.994 - .376=0.618
P2<Y<5)=PY<5-P(Y<2)=.994-.678=0.316.
Y is a discrete variable, so they are not equal.
c. Y is not a continuous random variable, so the earlier result do not hold.
4.8 a. The constant k = 6 is required so the density function integrates to 1.
b.P(4<Y<1)=.648.
C. Same as part b. above.

d.P(Y<.4|Y<.8)=P(Y<.4)/P(Y<.8)=.352/.896 = 0.393.

e. Same as part d. above.
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a. Y is a discrete random variable because F(y) is not a continuous function. Also, the set
of possible values of Y represents a countable set.

b. These values are 2, 2.5, 4, 5.5, 6, and 7.

C. p(2)=1/8,p(2.5)=3/16—1/8=1/16, p(4) = 1/2 - 3/16 = 5/16, p(5.5) = 5/8 — 1/2 =
1/8, p(6) = 11/16 — 5/8 = 1/16, p(7) = 1 — 11/16 = 5/16.

d. P(Y<¢5)=F(¢5)=.50 ¢p5=4.

‘1)‘95
a F(§s)= [6y(1—y)dy =.95,50 ¢,5 =0.865.
0

b. Since Y is a continuous random variable, yo = ¢, = 0.865.

a. Jz'cydy = [cyz/z]i =2c=1,s0c=1/2.
0

Y y
b. F(y)= [ f(dt=[4dt=2,0<y=<2.

0

1.0

0.4

0.2
|

0.0
|

c. Solid line: f(y); dashed line: F(y) !
d.P(1<Y<2)=FQ)—F(l)=1-.25=75.

e. Note that P(1 <Y <2)=1-P(0<Y<1). Theregion (0 <y <1) forms a triangle (in
the density graph above) with a base of 1 and a height of .5. So, P(0<Y <1)= 3 (1)(.5)
=25and P(1<Y<2)=1-.25=.75.
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412 a F(-0)=0, F(c0) = 1, and F(y;) — F(y2) = € * —e™* >0 provided y; > y.
b. F(gy)=1-e* = 3,50 ¢, = \/-In(.7) =0.5972.

c. f(y)=F'(y)= 2ye_y2 for y >0 and 0 elsewhere.

d. P(Y >200) =1 — P(Y <200)=1 - P(Y<200)=1 - F(2)=¢e*.

e. P(Y>100 | Y <200) = P(100 <Y < 200)/P(Y < 200) = [F(2) - F(1)]/F(2) = ="

1-e*

y 1 y
413  a Forosysl,F(y)zjtdtzyZ/z. For 1 <y<1.5, F(y)=J.tdt+J‘dt=1/2+y—1
0 0 1

=y —1/2. Hence,
0 y<0
y>/2  0<y<l
y—-1/2 1<y<1.5
1 y>1.5

F(y)=

b.P(O<Y<.5)=F(5)=1/8.

C.P(55Y<12)=F(1.2)-F(5=12-1/2-1/8=.575.
414  a. A triangular distribution.
y 1 Y 2
b. For0<y<1,F(y)=[tdt=y*/2. For 1 <y<2,F(y)= [tdt+[(2-t)dt=2y -4 -1.
0 0 1

C.P(8<Y<12)=F(1.2)- F(.8)=.36.

d. P(Y>1.5|Y>1)=P(Y > L.5)/P(Y > 1) = .125/.5 = .25.

415 a.Forb=0,f(y)=0. Also, [ f(y)=[b/y*=-b/y]; =1.
— b
b. F(y) =1 -Db/y, fory > b, 0 elsewhere.
c.PY>b+c)=1-Fb+c)=Db/(b+c).

d. Applying partc., P(Y>b+d|Y>b+c)=(b+c)/(b+d).
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2
416 a. _[c(2—y)dy:c[2y—y2/2]§ =2c=1,s0c=1/2.
0

b. F(y)=y—y*4, for 0 <y <2.

2.0

15

1.0
|

0.5
|

0.0
|

0.0 0.5 1.0 15 2.0

c. Solid line: f(y); dashed line: F(y) ’

d. P(1<Y<2)=FQ2)-FQ1)=1/4.

1
417 a [(ey*+y)dy=[ey’ /3+y* /2] =1,c=32.
0

b.F(y)=y’/2+Yy*/2 for0<y<1.

25
|

2.0

15

1.0

0.0
|

0.0 0.2 0.4 0.6 0.8 1.0

C. Solid line: f(y); dashed line: F(y) ’
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4.18

4.19

d. F-1)=0, F(0)=0, F(1) = 1.
e. P(Y <.5)=F(.5) = 3/16.

f.P(Y>.5]Y>.25)=P(Y>.5)/P(Y > .25) = 104/123.

0 1
a. j.zdy+j(.2+cy)dy=.4+c/2=1,soc= 1.2.
-1 0

0 y<-1
2(1+Y) -1<y<0
b. F(y)= 2
2(1+y+3y") 0<y<l1
1 y>1
c. Solid line: f(y); dashed line: F(y) ’

d. F(-1)=0, F(0) = .2, F(1) = 1

e. P(Y>.5]Y>.1)=P(Y>.5)/P(Y>.1)=.55/.774 = .71.

a. Differentiating F(y) with respect to y, we have
0 y<0
125 O0<y<2
A25y 2<y<4
0 y>4
b. F(3) - F(1)=7/16

f(y)=

c.1-F(1.5)=13/16

d. 7/16/(9/16) = 7/9.
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4.22

4.23

4.24

4.25

4.26
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From Ex. 4.16:
‘ 2 3 r 3 4
E(Y) =I-5y(2— y)dy =y7+%]§ =2/3, E(Yz)zj.Syz(z— y)dy :%H?]i =2/3.
0 0
So, V(Y) =2/3 — (2/3)* = 2/9.
From Ex. 4.17:

1
E(Y)=[1.5y>+y*)dy :%w;]; =17/24=.708.
0

E(Yz)zj‘l.Sy“ +y*)dy :%HT“L =3/10+1/4=.55.

So, V(Y) . 55— (.708)2 = .0487.

From Ex. 4.18:

E(Y)= }.2ydy+j-(.2y+1.2y2)dy =4, E(Y)= }.2y2dy+j(.2y2 +1.2y°)dy =1.3/3.
i’ q 5 0

So, V(Y) = 1.3/3 — (4)2 = .2733.
1. E(c)=ch(y)dy=coff(y)dy=c(1)=C-

2 E[cg(Y)]=Tcg(y)f(y)dy=CT9(y)f(y)dy=cE[g(Y)]-

3. E[gl(Y)+92(Y)+-~9k(Y)]=j[gl(y)+gz(y)+---gk(y)]f(y)dy

= Jo,(WTWdy+ [, f(ydy -+ [g () f(y)dy
= E[g,(Y)]+E[g,(Y)]+-E[g,(Y)].

V(Y)=E{[Y —E(Y)]*} = E{Y* —2YE(Y)+[E(Y)]*} = E(Y*) = 2[E(Y)]* +[E(Y)]’
=E(Y?)-[E(Y)] ="

Ex. 4.19:

E(Y):j.lzsydy+f125y2dy=31/12, E(Yz):j.lzsyzdy+j.125y3dy:47/6.
So, V(Y)0= 47/6 — (321/12)2 = 1.16. 0 2

a. E(aY +b) = T(ay+b)f(y)dy: Tayf(y)dy+ be(y)dy:aE(Y)+b:ay+b.

b.V(aY +b)=E{[aY +b—E(aY +b)]*} =E{[aY +b—au—-b]*} = E{a’[Y — u]*}
=a’V(Y) = a’c".



66

Chapter 4: Continuous Variables and Their Probability Distributions

Instructor’s Solutions Manual

4.27

4.28

4.29

4.30

431

4.32

4.33

First note that from Ex. 4.21, E(Y) =.708 and V(Y) =.0487. Then,
E(W)=E(5 -.5Y)=5—-_.5E(Y)=5-.5(.708) = $4.65.

V(W) =V(5-.5Y)=25V(Y) =.25(.0487) = .012.

a. By using the methods learned in this chapter, ¢ = 105.

1
b. E(Y)= 105] y (1-y)*dy=3/8.
0

61 61
E(Y)=.5[ydy= SYTE =60, E(Y?)=.5[y*dy = .SVT"]Z ~3600%. Thus,
59 59

V(Y) =36001 — (60)*= 1.

1 1

a E(Y)=[2y*dy=2/3, E(Y*)=[2y’dy =1/2. Thus, V()= 1/2 - (2/3)° = 1/18.
0 0

b. With X = 200Y — 60, E(X) = 200(2/3) — 60 = 220/3, V(X) = 20000/9.

c. Using Tchebysheftf’s theorem, a two standard deviation interval about the mean is
given by 220/3 +2+/20000/9 or (-20.948, 167.614).

E(Y)= [y Xy -2)6-y)dy =4.

4
a. E(Y)=6—1Jy3(4—y)dy=%[y4—y?]2 =2.4. V(Y)=.64.
0

b. E(200Y) = 200(2.4) = $480, V(200Y) = 200%(.64) = 25,600.

4
c. P(200Y > 600) =P(Y > 3) = 6%[ y*(4—y)dy =.2616, or about 26% of the time the
3

cost will exceed $600 (fairly common).
f 4

a E()=3[yT-yrdy=22y ~4y +2] =55
5

7
E(Yz):%jy2(7—y)2dy:§%y3 — Lyt +V§]Z =30.4, s0 V(Y) = .15.
5

b. Using Tchebysheff’s theorem, a two standard deviation interval about the mean is
given by 5.5+ 2+/.15 or (4.725, 6.275). Since Y > 5, the interval is (5, 6.275).

5.5
c. P(Y <55)=% I(7 —y)*dy =.5781, or about 58% of the time (quite common).
5
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4.37

4.38
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E(Y)= T yF(y)dy = TU dtj f(y)dy =Tﬁ f (y)dy]dt =T P(Y > y)dy = T[l —F(y)ldy.
0 0\ 0 o\y 0 0

Let p=E(Y). Then, E[(Y —a)’]=E[(Y —p+p—-a)’]

= E[(Y —u)*]-2E[(Y —p)(u—-a)]+(u-a)’
=o' +(n—-a)’.

The above quantity is minimized when p = a.

This is also valid for discrete random variables — the properties of expected values used
in the proof hold for both continuous and discrete random variables.

© 0 o0
E(Y)= I yf (y)dy :J- yf (y)dy +I yf (y)dy . In the first integral, let w=—y, Then,
—0 —o0 0

E(Y)= —wa (—w)dy + T yf (y)dy = —wa (w)dy + T yf (y)dy =0.

0 y<0
y
a F(y)={[idy=y 0<y<l
0
1 y>1

b.P@a<Y<a+b)=F@+b)-F@=a+b-a=h.

The distance Y is uniformly distributed on the interval A to B, If she is closer to A, she
has landed in the interval (A, 28 ). This is one half the total interval length, so the

probability is .5. If her distance to A is more than three times her distance to B, she has

landed in the interval (382, B). This is one quarter the total interval length, so the

probability is .25.

The probability of landing past the midpoint is 1/2 according to the uniform distribution.
Let X = # parachutists that land past the midpoint of (A, B). Therefore, X is binomial with
n=3andp=1/2. P(X=1)=3(1/2)’ = .375.

1
62 _61

First find E(Y?) =

1 {y_T_ 0-0 _0:+0,0,+0}

0,
y’dy = = -
é': 92 - e1 3 0, 3(62 - el) 3

V(Y) =

0°+0.0,+0° (0,40, ) (0,-0,)
1 1Y2 2 2 1 — 2 1 .
3 ( 2 j 12
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4.42

4.43

4.44

4.45

4.46

4.47

4.48

4.49

4.50

451

4.52

y

The distribution function is F(y)= ;691 , for 0, <y <0, For F(¢5)=.5, then

2 1

¢, =01 +.5(0,—01)=.5(0, + 0;). This is also the mean if the distribution.

Let A = R*, where R has a uniform distribution on the interval (0, 1). Then,

1
E(A) = nE(R?) = n[ridr =§
0

V(A) = V(R = P[ERY) - @ = n{f rtdr —@ } ) n{%_@ } i 4252 .

a. Y has a uniform distribution (constant density function), so k = 1/4.
0 y<-2

y
b. F(y)=1[4dy=2> -2<y<2
-2

1 y>2

Let Y = low bid (in thousands of dollars) on the next intrastate shipping contract. Then, Y
is uniform on the interval (20, 25).

a. P(Y<22)=2/5=4

b. P(Y>24)=1/5=.2.

Mean of the uniform: (25 + 20)/2 = 22.5.

The density for Y = delivery timeis f(y)=1,1<y<5. Also, E(Y) =3, V(Y)=4/3.

a. P(Y>2)=3/4.

b. E(C)=E(co+ciY?) =co+ ciE(Y?) = co+ ci[V(Y) + (E(Y))*] = Co + C1[4/3 + 9]

Let Y = location of the selected point. Then, Y has a uniform distribution on the interval
(0, 500).

a. P(475<Y<500)=1/20

b. PO<Y<25)=1/20

c. P(0<Y<250)=1/2.

If Y has a uniform distribution on the interval (0, 1), then P(Y > 1/4) = 3/4.

Let Y = time when the phone call comes in. Then, Y has a uniform distribution on the
interval (0, 5). The probability is P(0 <Y <1)+P(3 <Y <4)= 4.

Let Y =cycle time. Thus, Y has a uniform distribution on the interval (50, 70). Then,
P(Y>65|Y>55)=P(Y > 65)/P(Y > 55)=.25/(.75) = 1/3.

Mean and variance of a uniform distribution: p = 60, o° = (70-50)*/12 = 100/3.
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453 Let Y = time when the defective circuit board was produced. Then, Y has an approximate
uniform distribution on the interval (0, 8).
a. P(O<Y<1)=1/8.
b. P(7<Y<8)=1/8
C. PU<Y<S5|Y>4)=P@A<Y<5)/PY>4)=(1/8)/(1/2)=1/4.

454 LetY = amount of measurement error. Then, Y is uniform on the interval (.05, .05).
a. P0l1<Y<.0l)=.2
b. E(Y)=0, V(Y)= (.05 +.05)%/12 = .00083.

455 Let Y =amount of measurement error. Then, Y is uniform on the interval (.02, .05).
a. P.01<Y<.01)=2/7
b. E(Y)=(-02+.05)/2=".015, V(Y) = (.05 + .02)*/12 = .00041.

456 From Example 4.7, the arrival time Y has a uniform distribution on the interval (0, 30).
Then, P(25 <Y <301]Y > 10)=1/6/(2/3) = 1/4.

457  The volume of a sphere is given by (4/3)ar’ = (1/6)nd’, where r is the radius and d is the
diameter. Let D = diameter such that D is uniform distribution on the interval (.01, .05).

.05
Thus, E(2D*) = 2 Id *1dd =.0000065%. By similar logic used in Ex. 4.43, it can be

.01

found that V(£ D’ ) =.0003525x".

458 a.P(0<Z<12)=.5-.1151=.3849
b.P(-9<Z<0)=.5-.1841-.3159.
c.P(l3<Z<1.56)=.3821—-.0594 =.3227.
d.P(-2<72<.2)=1-2(.4207)=.1586.
e. P(-1.56 <Z<-2)=.4207 - .0594 = 3613
f. P(0 <Z <1.2) =.38493. The desired probability is for a standard normal.
459 a.zp=0.
b.zy=1.10
C.Zp=1.645
d. 20=2.576

4.60 The parameter c must be positive, otherwise the density function could obtain a negative
value (a violation).

4.61 Since the density function is symmetric about the parameter p, P(Y <) =P(Y > pn) = .5.
Thus, p is the median of the distribution, regardless of the value of c.

462 a.PZ’<1)=P(=1<Z<1)=.6826.
b. P(Z* < 3.84146) = P(-1.96 < Z < 1.96) = .95,



70

Chapter 4: Continuous Variables and Their Probability Distributions

Instructor’s Solutions Manual

4.63

4.64

4.65

4.66

4.67

4.68

4.69

4.70

471

4.72

4.73

a. Note that the value 17 is (17 — 16)/1 = 1 standard deviation above the mean.
So, P(Z>1)=.1587.
b. The same answer is obtained.

a. Note that the value 450 is (450 —400)/20 = 2.5 standard deviations above the mean.
So, P(Z>2.5)=.0062.

b. The probability is .00618.

c. The top scale is for the standard normal and the bottom scale is for a normal
distribution with mean 400 and standard deviation 20.

For the standard normal, P(Z > zp) = .1 if o = 1.28. So, Yo =400 + 1.28(20) = $425.60.

Let Y = bearing diameter, so Y is normal with p = 3.0005 and ¢ = .0010. Thus,
Fraction of scrap = P(Y > 3.002) + P(Y <2.998) =P(Z > 1.5) + P(Z <-2.5) = .0730.

In order to minimize the scrap fraction, we need the maximum amount in the
specifications interval. Since the normal distribution is symmetric, the mean diameter
should be set to be the midpoint of the interval, or p = 3.000 in.

The GPA 3.0 1s (3.0 — 2.4)/.8 = .75 standard deviations above the mean. So, P(Z>.75) =
.2266.

The z—score for 1.9 is (1.9 — 2.4)/.8 =—.625. Thus, P(Z <-.625) =.2660.

From Ex. 4.68, the proportion of students with a GPA greater than 3.0 is .2266. Let X =#
in the sample with a GPA greater than 3.0. Thus, X is binomial with n =3 and p = .2266.
Then, P(X = 3) = (.2266)* = .0116.

Let Y = the measured resistance of a randomly selected wire.
a. P(LI12<Y<.14)=P(E <7 <A818) =P(-2 <Z <2)=.9544.

005 — .005

b. Let X =# of wires that do not meet specifications. Then, X is binomial with n =4 and
p =.9544. Thus, P(X = 4) = (.9544)* = .8297.

Let Y = interest rate forecast, so Y has a normal distribution with p=.07 and 6 = .026.
a. P(Y>.11)=P(Z>-1=2)=P(Z>1.54)=.0618.
b. P(Y<.09)=P(Z>80)=P(Z>.77)=.77%4.

Let Y = width of a bolt of fabric, so Y has a normal distribution with p =950 mm and ¢ =

10 mm.

a. P(947 <Y <958) = P(HP0 <7 <380 =P(-3 <Z<.8)=.406

b. Tt is necessary that P(Y <c)=.8531. Note that for the standard normal, we find that
P(Z <zp) = .8531 when zp = 1.05. So, ¢ =950+ (1.05)(10) = 960.5 mm.
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474 LetY = examination score, so Y has a normal distribution with p = 78 and o* = 36.

a. P(Y>72)=P(Z>-1)=.8413.

b. We seek ¢ such that P(Y > ¢) =.1. For the standard normal, P(Z > zy) = .1 when z, =
1.28. Soc =78+ (1.28)(6) = 85.68.

c. We seek ¢ such that P(Y > c¢) = .281. For the standard normal, P(Z > zy) = .281 when
Zo=.58. So,c =78 +(.58)(6) = 81.48.

d. For the standard normal, P(Z <—.67) = .25. So, the score that cuts off the lowest 25%
is given by (—.67)(6) + 78 = 73.98.

e. Similar answers are obtained.

f. P(Y>84|Y>72)=P(Y>84)/P(Y>T72)=P(Z>1)/P(Z>-1)=.1587/.8413 = .1886.

475 LetY = volume filled, so that Y is normal with mean p and 6 = .3 oz. They require that
P(Y > 8) =.01. For the standard normal, P(Z > zy) = .01 when z, = 2.33. Therefore, it
must hold that 2.33 = (8 — p)/.3, so u=7.301.

4.76 It follows that .95 = P(|Y—p| < 1) = P(|Z| < 1/0), so that 1/6 = 1.96 or 6 = 1/1.96 = .5102.

477 a.LetY =SAT math score. Then, P(Y <550)=P(Z<.7)=0.758.

b. If we choose the same percentile, 18 + 6(.7) = 22.2 would be comparable on the ACT
math test.

4.78 Easiest way: maximize the function Inf (y) = —In(c+/27) —% to obtain the maximum

aty = p and observe that f () = 1/( ov2n ).

4,79  The second derivative of f (y) is found to be f "(y) = (%)%f(y*“)z/ 207 |_1 —(“;—zy)zj Setting

G N2m
this equal to 0, we must have that ll —(“;—ZV)ZJ = 0 (the other quantities are strictly positive).

The two solutions are y=p + ¢ and p— o.

4.80 Observe that A= L*W = |Y|x3|Y| =3Y% Thus, E(A) = 3E(Y?) = 3(c” + 1)).
481 a T()=[e’dy=-e’] =1,
0
b. T'(a) = _[ y* e Vdy = [— y“’le’y]: + j(a ~y“?edy =(a—DI'(a.—1).
0 0

4.82 From above we have I'(1) =1, sothat I'(2) = 1I'(1) =1, I'(3) =2I'(2) = 2(1), and
generally I'(n) = (n-1)['(n—1) = (n—1)! T'(4)=3!=6and I'(7) =6! = 720.

4.83 Applet Exercise — the results should agree.
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4.84

4.85

4.86

4.87

4.88

4.89

4.90

491

a. The larger the value of a, the more symmetric the density curve.
b. The location of the distribution centers are increasing with a.
. The means of the distributions are increasing with a.

a. These are all exponential densities.
b. Yes, they are all skewed densities (decaying exponential).
C. The spread is increasing with f3.

a. P(Y <3.5)=.37412
b. P(W < 1.75) =P(Y/2 < 1.75) = P(Y < 3.5) = .37412.
c. They are identical.

a. For the gamma distribution, ¢ ,,=.70369.
b. For the % distribution, ¢ ,, =.35185.

c. The .05—quantile for the y* distribution is exactly one—half that of the .05—quantile for
the gamma distribution. It is due to the relationship stated in Ex. 4.86.

Let Y have an exponential distribution with § = 2.4,
a. P(Y>3)= Ifge‘y/“dy =e V4= 2865.
3

3

b. PQ<Y £3)=I4e‘y/2'4dy = .1481.

2.4
2

a. Note that J‘Ee‘y/ﬁdy =e?? =.0821,s0p=.8
2
b.P(Y<1.7)=1-e"""* = 5075

Let Y = magnitude of the earthquake which is exponential with B =2.4. Let X=# of
earthquakes that exceed 5.0 on the Richter scale. Therefore, X is binomial with n = 10

andp=P(Y>5)= Tﬁe_y/“dy =e¥>* = 1245. Finally, the probability of interest is
P(X > 1)5= 1-P(X=0)=1-(.8755)""=1- 2646 = .7354.
Let Y = water demand in the early afternoon. Then, Y is exponential with f = 100 cfs.
a. P(Y>200)= Tﬁe_y“oody =e” =.1353.
200

b. We require the 99" percentile of the distribution of Y:

P(Y > ¢gy) = j eV Pdy =e™» "% = 01. So, ¢, =-100In(.01) = 460.52 cfs.
4).99
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The random variable Y has an exponential distribution with § = 10. The cost C is related
to Y by the formula C = 100 + 40Y + 3Y2. Thus,

E(C) = E(100 + 40Y + 3Y?) = 100 + 40(10) + 3E(Y?) = 100 + 400 + 3(100 + 10%*) = 1100.
To find V(C), note that V(C) = E(C?) — [E(C)]*. Therefore,
E(C?) = E[(100 + 40Y + 3Y%)*] = 10,000 + 2200E(Y?) + 9E(Y*) + 8000E(Y) + 240E(Y?).
E(Y)=10 E(Y?) =200
E(Y?) = Ty3 e dy = '(4)100” = 6000.
0

E(YH) = j y* L-e™1%dy =I'(5)100* = 240,000.
0

Thus, E(C?) = 10,000 + 2200(200) + 9(240,000) + 8000(10) + 240(6000) = 4,130,000.

So, V(C) = 4,130,000 — (1100)* = 2,920,000.

Let Y = time between fatal airplane accidents. So, Y is exponential with = 44 days.
31

a. P(Y<3l)= jﬂe-y“‘“dy =1-e7"* = 5057.
0

b. V(Y)=44%=1936.

Let Y = CO concentration in air samples. So, Y is exponential with f = 3.6 ppm.
a. P(Y>9)= jS—}ée-y”"dy =e ¢ = 0821
9

b. P(Y>9)= I%e‘”“dy =e*5 = 0273
9

a.Foranyk=1,2,3, ...

PX=K) =Pk-1<Y<K) =P(Y<k) -P(Y<k—1)=1-e*P_(1—e®&DP
— g DB _ g kB

b. P(X = k) = g VB _ g kB — o (k1B _ gk DIB(glB) — g V/B(| _ ol/By — [ 1]k (] _ g!/B).

Thus, X has a geometric distribution withp=1— e'?,
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4.96

4.97

4.98

4.99

4.100

4101

4.102

a. The density function f(y) is in the form of a gamma density with o =4 and § = 2.

Thus, k = ! 7 =i.
r4)y2* 96

b. Y has a y* distribution with v = 2(4) = 8 degrees of freedom.

c. E(Y)=4(2) =8, V(Y) =4(2%) = 16.

d. Note that 6 = v/16 =4. Thus, P(|Y — 8| <2(4))=P(0 <Y < 16) = .95762.
P(Y>4)= He‘y“‘dy e = .3679.
4

We require the 95™ percentile of the distribution of Y:

P(Y> ¢5) = [de7/*dy=e /" = 05. So, h, =—4In(.05) = 11.98.
o5

1
aP(Y>1)=>¢c=e'+e! =.7358

y=0
b. The same answer is found.

a.PX;=0)=e" andP(X,=0)=e ™. Sincely>L\;, 672 <e™.
b. The result follows from Ex. 4.100.

c. Since distribution function is a nondecreasing function, it follows from part b that
P(Xi <k) =P(Y>21) > P(Y > 12) = P(X2 <K)

d. We say that X, is “stochastically greater” than X;.

Let Y have a gamma distribution with o = .8, B = 2.4.

a. E(Y)=(.8)2.4)=1.92

b. P(Y>3)=.21036

c. The probability found in Ex. 4.88 (a) is larger. There is greater variability with the
exponential distribution.

d PQ2<Y<3)=P(Y>2)-P(Y>3)=.33979 — .21036 = .12943.

Let Y have a gamma distribution with o = 1.5, f = 3.
a. P(Y>4)=.44592.
b. We require the 95" percentile: ¢, = 11.72209.
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Let R denote the radius of a crater. Therefore, R is exponential w/ B = 10 and the area is
A=nR* Thus,

E(A) = E(nR?) = nE(R?) = n(100 + 100) = 200x.
V(A) = E(AY) — [E(A)]* = 7°[E(RY) — 200%] = n’[240,000 — 200°] = 200,00077,
where E(R*) = j% r‘e1°dr = 10*T(5) = 240.000.

0

Y has an exponential distribution with p = 100. Then, P(Y >200) =e 2! =¢2 Let the
random variable X = # of componential that operate in the equipment for more than 200
hours. Then, X has a binomial distribution and

P(equipment operates) = P(X >2) =P(X=2)+P(X=3)=3(e?)’(1-e?)+(e7)’ =.05.

Let the random variable Y = four—-week summer rainfall totals
a. E(Y)=1.6(2)=3.2,V(Y)=1.6(2% =64
b. P(Y>4)=.28955.

Let Y = response time. If =4 and o” = 8, then it is clear that o = 2 and = 2.
a. f(y)=4ye??,y>0.
b. P(Y<5)=1-.2873=.7127.

a. Using Tchebysheff’s theorem, two standard deviations about the mean is given by

4+2+/8 =4+5.657 or (-1.657,9.657), or simply (0, 9.657) since Y must be positive.
b. P(Y <9.657)=1-.04662 = 0.95338.

Let Y = annual income. Then, Y has a gamma distribution with o =20 and 3 = 1000.
a. E(Y)=20(1000) = 20,000, V(Y) = 20(1000)* = 20,000,000.
b. The standard deviation 6 = /20,000,000 =4472.14. The value 30,000 is 22220000

447214
= 2.236 standard deviations above the mean. This represents a fairly extreme value.
c. P(Y>30,000)=.02187

Let Y have a gamma distribution with a = 3 and p = 2. Then, the loss L = 30Y + 2Y>.
Then,

E(L) = E(30Y + 2Y?) = 30E(Y) + 2E(Y?) = 30(6) + 2(12 + 6°) = 276,

V(L) = E(L?) — [E(L)]* = E(900Y? + 120Y* + 4Y*) — 2762

0 0

E(Y) = [%e”" =480 E(Y!) = [%e”"? =5760

0 0

Thus, V(L)=900(48) + 120(480) + 4(5760) — 276> = 47,664.
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4.110 Y has a gamma distribution with a =3 and B =.5. Thus, E(Y) = 1.5 and V(Y) = .75.

ay _ a 1 a—1,-y/B o at+a—1,-y/B 1 T(a+o)B** _ Br(a+a)
4111 a. E(Y )_Iy F(a)B“y e’dy = r(a)B“,[y e”dy = [(a)B ! R O

b. For the gamma function I'(t), we require t > 0.

(1 r
c. E(Y') =Rl — b _ g3,

d. EGY)=E(Y")=L552 a>0.

BIT(~1+a) _
e. EQ/Y)=E(Y H)=E1 =l s a> 1
EQ/NY) = E(Y ) = s - Heed) > 5,
2N _ -2 B2I(-2+a) _ B2 (a—2)
E(I/Y )_ E(Y ) C(a) 7 (a-1)(o-2)T(a-2) g2(a- l)((x 2)? 0> 2.

4.112 The chi—square distribution with v degrees of freedom is the same as a gamma
distribution with o =v/2 and § = 2.

a. From Ex.4.111, E(Y®)= zaiii?)

b. AsinEx. 4.111 with o +a > 0 and o = v/2, it must hold that v > -2a
c. EWY)=E(Y$)="2 5o,

r(\') 3

d. E(1/Y)=E(Y‘1)_% L v>2,

EQ/Y)=E(Y )= }(Fz(’), v>1.

QAN =B ™) = i = won - 4> 4

4.113 Applet exercise.

4.114 a. This is the (standard) uniform distribution.
b. The beta density with o= 1, p = 1 is symmetric.
C. The beta density with a = 1, B = 2 is skewed right.
d. The beta density with o =2, f =1 is skewed left.
e. Yes.

4.115 a. The means of all three distributions are .5.
b. They are all symmetric.
C. The spread decreases with larger (and equal) values of a and .
d. The standard deviations are .2236, .1900, and .1147 respectively. The standard
deviations are decreasing which agrees with the density plots.
e. They are always symmetric when o = f3.
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a. All of the densities are skewed right.
b. The density obtains a more symmetric appearance.
c. They are always skewed right when a < and o> 1 and B > 1.

a. All of the densities are skewed left.
b. The density obtains a more symmetric appearance.
c. They are always skewed right when o > and a > 1 and B > 1.

a. All of the densities are skewed right (similar to an exponential shape).
b. The spread decreases as the value of  gets closer to 12.

c. The distribution with a = .3 and B = 4 has the highest probability.

d. The shapes are all similar.

a. All of the densities are skewed left (a mirror image of those from Ex. 4.118).
b. The spread decreases as the value of o gets closer to 12.

C. The distribution with o =4 and B = .3 has the highest probability.

d. The shapes are all similar.

Yes, the mapping explains the mirror image.

a. These distributions exhibit a “U” shape.
b. The area beneath the curve is greater closer to “1”” than “0”.

a.P(Y>.1)=.13418

b. P(Y<.1)=1-.13418 = .86582.

C. Values smaller than .1 have greater probability.
d. P(Y<.1)=1-.45176 =.54824

e. P(Y>.9)=.21951.
f.P(0.1<Y<0.9)=1-.54824 — 21951 = .23225.
g. Values of Y < .1 have the greatest probability.

a. The random variable Y follows the beta distribution with o =4 and § = 3, so the

— T e
constant K = +r55 =35 = 60.

b. We require the 95" percentile of this distribution, so it is found that ¢ ,; = 0.84684.

1

a. P(Y>.4)= [(12y* -12y*)dy = lay* —3y*], = 8208.
4

b. P(Y > .4) = .82080.

From Ex. 4.124 and using the formulas for the mean and variance of beta random
variables, E(Y) = 3/5 and V(Y) = 1/25.
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y
4126 a. F(y)=[(6t-6t*)dt=3y’ —2y*,0<y<1. F(y)=0fory<0and F(y)=1fory>1.
0

15

1.0

0.5
|

0.0
|

0.0 0.2 0.4 0.6 0.8 1.0

b. Solid line: f(y); dashed line: F(y) ’

C. P(5<Y <.8)=F(8)-F(.5)=1.92-1.092—.75+.25=.396.

4127 Fora=B=1, f(y)=—2_y"(1-y)™ =1, 0< y <1, which is the uniform distribution.

T(HI(D)

4,128 The random variable Y = weekly repair cost (in hundreds of dollars) has a beta
distribution with & = 1 and p = 3. We require the 90" percentile of this distribution:

P(Y >¢,)= [30-y)’dy=(1-¢,)’ =.1.
¢)

Therefore, ¢, = 1 —(.1)"” =.5358. So, the budgeted cost should be $53.58.

4129 E(C)=10+20E(Y) +4E(Y)=10+20(1) +4(Z+1) =2
V(C) = E(C?) — [E(C)I* = E[(10 + 20Y + 4Y?)*] — (22)

E[(10 + 20Y + 4Y%)*] = 100 + 400E(Y) + 480E(Y?) + 160E(Y?) + 16E(Y*
Using mathematical expectation, E(Y?) = - and E(YYH = &. So,

V(C) = E(C?) — [E(C)]* = (100 + 400/3 + 480/6 + 160/10 + 16/15) — (52/3)* = 29.96.
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To find the variance o = E(Y?) — p:

1
2N T'(a+B) o+l p-1 _ T(o+B) T(o+2)I(B) _ (a+l)a
ECY") = rorp I Yy (=Y)" Y = it Tz = @epash

2 _ (o+l)a

Y (0B )(a+p+D) (u+B)Z = (otp) (aspil) (a+[5+1)

This is the same beta distribution used in Ex. 4.129.

)
a. P(Y<.5)= [2(1-y)dy=2y-y*] =.75
0
b. E(Y)=1/3,V(Y)=1/18,s0 6 = 1//18 = .2357.

Let Y = proportion of weight contributed by the fine powders

E(Y)=.5 V(Y)=9/(36*%7) = 1/28

E(Y)=.5V(Y)=4/(16%5)=1/20

E(Y)=.5 V(Y)=1/(4*3)=1/12

. Case (a) will yield the most homogenous blend since the variance is the smallest.

oo oo

The random variable Y has a beta distribution with o =3, f = 5.
a. The constant ¢ = 75k = 75 =105.

E(Y)=3/8.

V(Y)=15/(64*%9) =5/192, s0o 6 = .1614.

P(Y > 375+ 2(.1614)) = P(Y > .6978) = .02972.

Qoo

a. Ifa =4 and B =7, then we must find

10 10 . .
PY <.7)=F(7)= Z[ : j(.7)I (.3)""" =P(4 < X < 10), for the random variable X

distributed as binomial with n =10 and p =.7. Using Table I in Appendix III, this is
.989.

b. Similarly, F(.6) = P(12 < X <25), for the random variable X distributed as binomial
with n =25 and p =.6. Using Table I in Appendix III, this is .922.

. Similar answers are found.
a.P(Y =0)=(1-p)">P(Y2=0)=(1-py)", since p; < ps.
n t“ (-t
b.P(Y{ <k =1-P;=>k+1)=1- 1- =
1=k =1-P(Yizk+1) Zmp( )’ IB(k+1n m
=1—-P(X<py)=P(X>p;), where is X beta with parameters k + 1, n — k.

c. From part b, we see the integrands for P(Y; < k) and P(Y, < k) are identical but since
p1 < P2, the regions of integration are different. So, Y is “stochastically greater” than Y.
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4.136

4.137

4.138

4.139

4.140

4.141

a. Observing that the exponential distribution is a special case of the gamma distribution,
we can use the gamma moment—generating function with a =1 and f = 6:

1
m(t)=——, t<1/6.
® 1-6t

b. The first two moments are found by m'(t) = ﬁ, E(Y)=m'(0)=6.
" _ 26 2N " _ 2 _ 2 2_n2
m (t)—m, E(Y?)=m"(0)=26". So, V(Y)=206"-6"=6".

The mgf for U is m, (t) = E(e" )= E(e"®*)=E(e”e™" ) =e"m(at). Thus,
m, (t) = be”m(at) +ae”m’(at). So, m|(0)=b+am'(0)=b+au=EU).

m/) (t) = b’*e” m(at) + abe™ m’(at) + abe™ m’'(at) + a’e”m’(at), so
m., (0)=b’ +2abp+a’E(Y?)=EU?).

Therefore, V(U) = b> +2abp+a’E(Y?) — (b+ap)’ = a’[E(Y?)-p’]=a’c>.

a. For U =Y — p, the mgf m; (t)is given in Example 4.16. To find the mgf for Y =U + ,
use the result in Ex. 4.137 witha=1,b=—p:

mY (t) — e—ptmu (t) — eut+czt2/2

b. m!(t) = (n+tc?)e" /% so ml(0)=p

my (1) = (u+1c”)’e" "% + %"/ 5o m{(0)=p* +c”. Finally, V(Y) = o".

Using Ex. 4.137 with a = -3 and b = 4, it is trivial to see that the mgf for X is
m, (t) = e‘“m(—3t) — p(43n9e’t /2

By the uniqueness of mgfs, X is normal with mean 4 — 3 and variance 95°.

a. Gamma witha =2, =4
b. Exponential with = 3.2
c. Normal with p=-5, 6* = 12

m(t)=E(e" )= J'—Wd = o=t

6,
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4142 a. m, (t)=52L

b. From the cited exercises, m,, (t) = ea;t‘l . From the uniqueness property of mgfs, W is

uniform on the interval (0, a).
c. The mgf for X is m, (t) =<1, which implies that X is uniform on the interval (-a, 0).

—at 2

d. The mgf for Vis m, (t) = e™ £=L = &=
interval (b, b + a).

e(h+a)!_ bt

& which implies that V is uniform on the

4.143 The mgf for the gamma distribution is m(t) =(1—pt)™*. Thus,
m'(t) = af(1-Bt) ", so m'(0)= af = E(Y)

m"(t) = (o + Dap>(1 - Bt) 2, so M"(0) = (o +)ap® = E(Y?). So,
V(Y) = (a+Dap’ —(ap)’ = ap’.

4.144 a. The density shown is a normal distribution with p =0 and 6> =1. Thus, k =1/~/27 .

b. From Ex. 4.138, the mgfis m(t)=e"’2.
¢. E(Y)=0and V(Y) = 1.

0 _2
-0 5°

0
4145 a. E(e7%)= [ dy =2e""]

-N

t+1°

0
b. m(t)=E(e") = [e”e’dy =7, t>-1.
c. By using the methods with mgfs, E(Y)=—1, E(Y}) =2, s0 V(Y)=2 - (-1)* = 1.

4.146 We require P([Y— | < ko) >.90 =1 — 1/k*. Solving for k, we see that k = 3.1622. Thus,
the necessary interval is [Y— 25,000| < (3.1622)(4000) or 12,351 < 37,649.

4.147 We require P(|Y— | <.1)>.75=1 - 1/k%. Thus, k =2. Using Tchebysheff’s inequality,
1 =ko and so 6 =1/2.

4.148 In Exercise 4.16, u=2/3 and 6 = +2/9 = .4714. Thus,
P(Y — | <20) =P(]Y — 2/3] <.9428) = P(-.2761 <Y < 1.609) = F(1.609) = .962.

Note that the negative portion of the interval in the probability statement is irrelevant
since Y is non—negative. According to Tchsebysheft’s inequality, the probability is at
least 75%. The empirical rule states that the probability is approximately 95%. The
above probability is closest to the empirical rule, even though the density function is far
from mound shaped.
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4.149

4.150

4.151

4.152

4.153

4.154

For the uniform distribution on (6, 8,), u= 2% and 6* = % . Thus,

_ (0,-0)
20 N

The probability of interest is

P(Y -1 <20) =P(n—20 <Y <p+20) = P(A3f <y < Ak + ()

2

It is not difficult to show that the range in the last probability statement is greater than the
actual interval that Y is restricted to, so

P( 91;92 _(9%91)5 Y < 91;92 +(92[—391) )=P(0,<Y<0))=1.

Note that Tchebysheff’s theorem is satisfied, but the probability is greater than what is
given by the empirical rule. The uniform is not a mound—shaped distribution.

For the exponential distribution, p = p and o* = B> Thus, 26 = 2p. The probability of
interest is

P(Y — 1| <26) =P(u—-26 <Y< p+206)=P(B<Y<3B)=PO<Y<3P)

This is simply F(3B) =1 — e P =.9502. The empirical rule and Tchebysheff’s theorem
are both valid.

From Exercise 4.92, E(C) = 1000 and V(C) = 2,920,000 so that the standard deviation is
42,920,000 =1708.80. The value 2000 is only (2000 — 1100)/1708.8 = .53 standard
deviations above the mean. Thus, we would expect C to exceed 2000 fair often.

We require P(|L— p < ko) >.89 = 1 — 1/k>. Solving for k, we have k =3.015. From Ex.
4.109, n =276 and o = 218.32. The interval is

IL—276] <3.015(218.32) or (-382.23, 934.23)
Since L must be positive, the interval is (0, 934.23)

From Ex. 4.129, it is shown that E(C) = 2 and V(C) = 29.96, so, the standard deviation
184/29.96 = 5.474. Thus, using Tchebysheft’s theorem with k = 2, the interval is

Y — 52| <2(5.474) or (6.38, 28.28)

apn=70=207)=14.
b. Note that 6 = /14 =3.742. The value 23 is (23 — 7)/3.742 = 4.276 standard

deviations above the mean, which is unlikely.
c. Witha=3.5and =2, P(Y>23)=.00170.
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The random variable Y is uniform over the interval (1, 4). Thus, f(y)=1 for1 <y<4
and f(y)=0 elsewhere. The random variable C = cost of the delay is given as

C=gr)= 100 1<y<2
—9t= 100+20(Y =2) 2<y<4

Thus, E(C)=E[g(Y)]= [g(y)f(y)dy = [“Ldy+ [[100+20(y —2)]4dy =$113.33.

1

4.156 Note thatY is a discrete random variable with probability .2 + .1 = .3 and it is continuous

4.157

4.158

4.159

with probability 1 —.3 =.7. Hence, by using Definition 4.15, we can write Y as a mixture
of two random variables X; and X,. The random variable X is discrete and can assume
two values with probabilities P(X; = 3) = .2/.3 =2/3 and P(X; = 6) =.1/.3 = 1/3. Thus,
E(X)) =3(2/3) + 6(1/3) = 4. The random variable X; is continuous and follows a gamma
distribution (as given in the problem) so that E(X;) = 2(2) = 4. Therefore,

E(Y) = .3(4) +.7(4) = 4.

0 Xx<0

a. The distribution function for X is F(x) = J-ﬁe"”modx =1-e" 0<x<200.

0

1 X =200
200

b. EX)= [ xgiye™"*dx+.1353(200) = 86.47, where .1353 = P(Y > 200).
0

The distribution for V is gamma with o =4 and § = 500. Since there is one discrete point
at 0 with probability .02, using Definition 4.15 we have that ¢; = .02 and ¢, = .98.
Denoting the kinetic energy as K = %Vz we can solve for the expected value:

E(K)=(.98) 2 E(V?) = (.98) ™ {V(V) + [E(V)]*} = (.98) ™ {4(500)* + 20007} = 2,450,000m.

a. The distribution function has jumps at two points: y = 0 (of size .1) and y = .5 (of size
.15). So, the discrete component of F(y) is given by

0 y<0
F(y)={3==4 0<y<5
1 y>.5

The continuous component of F(y) can then by determined:
0 y <0
4y*/3  0<y<.5
Fz (y)=
4y-1)/3 S5<y«<l
1 y>1



84

Chapter 4: Continuous Variables and Their Probability Distributions

Instructor’s Solutions Manual

4.160

4.161

4.162

4.163

4.164

4.165

b. Note that ¢; =.1 +.15=25. So, F(y)=0.25F,(y)+0.75F,(y).

First, ob that f,(y)=F)(y)= By/3 0<y<.3 Th
c. First, observe that f,(y)=F/(y)= 4/3 y>5 us,

5 1
E(Y)=.25(6)(.5)+ [8y”/3dy + [4y/3dy =533 . Similarly, E(Y}) = .3604 so
0 5

that V(Y) = .076.

n(1+y?)

Y
a. F(y)zf 2—dy=2tan"'(y)+4,-1<y<LF(y)=0if y<0, F(y)=1if y>1.
-1

b. Find E(Y) directly using mathematical expectation, or observe that f(y) is symmetric
about 0 so using the result from Ex. 4.27, E(Y) = 0.

Here, p =70 and o = 12 with the normal distribution. We require ¢, the 90™ percentile
of the distribution of test times. Since for the standard normal distribution, P(Z < zp) =.9
for zo = 1.28, thus

d, =70+ 12(1.28) = 85.36.

Here, p = 500 and 6 = 50 with the normal distribution. We require ¢ ,,, the 1% percentile
of the distribution of light bulb lives. For the standard normal distribution, P(Z < zy) =
.01 for zo =-2.33, thus

¢, =500+ 50(-2.33) =383.5

Referring to Ex. 4.66, let X = # of defective bearings. Thus, X is binomial with n =5 and
p = P(defective) = .073. Thus,

PX>1)=1-P(X=0)=1-(.927)’ = .3155.

Let Y = lifetime of a drill bit. Then, Y has a normal distribution with p = 75 hours and
o =12 hours.

a. P(Y<60)=P(Z<-1.25)=.1056

b. P(Y>60)=1-P(Y<60)=1-.1056 =.8944.

c. P(Y>90)=P(Z>1.25)=.1056

The density function for Y is in the form of a gamma density with o =2 and = .5.

= 1 =
a. ¢ r(2)(.5)° 4.

b. E(Y)=2(.5)=1,V(Y)=2(.5)= 5.
c. mity=—L-,t<2.

(1-5t)* 2
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4.167

4.168

4.169

4.170
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In Example 4.16, the mgfis m(t) = e""/2 The infinite series expansion of this is

M) = 1+ (S (5] () =1 5

Then, p; = coefficient of t, so u; =0
1, = coefficient of t2/2!, SO Up = o’
w3 = coefficient of t3/3!, sous=0
1y = coefficient of t'/4!, so py = 36"

For the beta distribution,

1 1
ky k T(atB) ,0-1 B-1 4y, — T(a+B) k+a-1 B-1 _ T(a+B) T(k+a)T'(B)

E(Y ) - .[ y T(a)I(B) y (1 - y) dy ~ T(a)T(B) J- y (1 - y) dy T T()I(B) T(k+a+p) *

0

Thus, E(Yk) = [(ap)C(k+a)

F'(o)C(k+a+p) *

Let T = length of time until the first arrival. Thus, the distribution function for T is given

by
F(t)=P(T<t)=1-P(T>t)=1—P[no arrivals in (0, t)] = 1 — P[N =0 in (0, t)]

The probability P[N =0 in (0, t)] is given by (M) = S Thus, F(t)=1— e Mand
f(ty=2re™,t>0.
This is the exponential distribution with = 1/A.

Let Y = time between the arrival of two call, measured in hours. To find P(Y > .25), note
that At =10 and t= 1. So, the density function for Y is given by f(y) = 10e"'%, y > 0.
Thus,

P(Y> 25)=¢ %) =2 = 082.

a. Similar to Ex. 4.168, the second arrival will occur after time t if either one arrival has
occurred in (0, t) or no arrivals have occurred in (0, t). Thus:

P(U >t) = P[one arrival in (0, t)] + P[no arrivals in (0, t)] = (M);!em + (“)llffm . So,
F)=1-PU>t)=1- 20"  (0e? —1_ it4])e™,

The density function is given by f(t)=F'(t)=A’te™, t>0. This is a gamma density

with a =2 and B = 1/A.

k-1
b. Similar to part a, but let X = time until the k™ arrival. Thus, P(X>1)= z(“% . So,
=0
k-l Otyle n
o
FO=1- ) —.
n=0
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The density function is given by

k— k-1 k-1 k-1
e m m -t o| A ot (At)" (at)™!
f(t) =F (t) - _{ z (n- 1)!} =Ae { n (n-1)! } . Or,
=0 n=1
kk k— l -t

f(t) =245, t>0. This is a gamma density with a =k and = 1/A.

4171 From Ex. 4.169, W = waiting time follow an exponential distribution with § = 1/2.
a. E(W) =1/2, V(W) = 1/4.

b. P(at least one more customer waiting) = 1 — P(no customers waiting in three minutes)
=1-¢"

4.172 Twenty seconds is 1/5 a minute. The random variable Y = time between calls follows an
exponential distribution with f =.25. Thus:

P(Y > 1/5) = j4e-4ydy e’

1/5
4.173 Let R = distance to the nearest neighbor. Then,
P(R >r) = P(no plants in a circle of radius r)

Since the number of plants in a area of one unit has a Poisson distribution with mean A,
the number of plants in a area of «r” units has a Poisson distribution with mean Azr’.
Thus,

Fn=PR<rn=1-PR>r=1-¢e"
So, f(r)=F'(t)=2Arre™ ,r>0.

4,174 LetY = interview time (in hours). The second applicant will have to wait only if the time
to interview the first applicant exceeds 15 minutes, or .25 hour. So,

P(Y>.25)= [2¢™dy=e"* = .61,

25

4.175 From Ex. 4.11, the median value will satisfy F(y)=y”/2=.5. Thus, the median is
given by J2=1414.

4.176 The distribution function for the exponential distribution with mean B is F(y)=1-e¥'?.
Thus, we require the value y such that F(y)=1-e™¥'? =.5. Solving for y, this is BIn(2).



Chapter 4: Continuous Variables and Their Probability Distributions

87

Instructor’s Solutions Manual

4177 a.2.07944 =3In(2)

4.178

4.179

b. 3.35669 < 4, the mean of the gamma distribution.
C. 46.70909 < 50, the mean of the gamma distribution.
d. In all cases the median is less than the mean, indicating right skewed distributions.

15

1.0

fy)

0.0
|

0.0 0.2 0.4 0.6 0.8 1.0

The graph of this beta density is above.

a. Using the relationship with binomial probabilities,
P(1<Y<.2)=4(2)(8)+(2)' = 4(.1)’(.9) - (.1)* = .0235.

b. P(.1<Y<.2)=.9963 —.9728 =.0235, which is the same answer as above.

C. ¢, =.24860, ¢, =.902309.

d. P(dos <Y< d4)="9.

Let X represent the grocer’s profit. In general, her profit (in cents) on a order of 100k
pounds of food will be X =1000Y — 600k as long as Y <k. But, when Y >k the grocer’s
profit will be X = 1000k — 600k = 400k. Define the random variable Y’ as

Y'—Y 0<Y <k
1k Y=k

Then, we can write g(Y’') = X =1000Y’ + 600k. The random variable Y’ has a mixed
distribution with one discrete point at K. Therefore,

1
C1 :P(Y':k):P(Y Zk):j3y2dy=1—k3,SOthat02=k3,
k

0 0<y<k [sea
Thus, Fy(y)=1, VoK and F,(y)=P(Y,<y|0<Y'<k)=2 Y oo<y<Kk.

KoK
Thus, from Definition 4.15,

E(X)=E[g(Y")]=c,E[g(Y)]+C,E[g(Y,)]=(1-k*)400k + k3_[(1000y—600k)%2dy,

or E(X) = 400k — 250k*. This is maximized at k = (.4)"” = .7368. (2™ derivative is —.)
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4.180

4181

4.182

4.183

4.184

4.185

4.186

2
a. Using the result of Ex. 4.99, P(Y <4)=1- ) #¢%=.7619.

y!
y=0

b. A similar result is found.

The mgf for Zism, (t) = E(e%) = E(e"* ") =e *'m, (t/5) ="', which is a mgf for a
normal distribution with p=0and ¢ = 1.

a. P(Y <4)=P(X < In4) = P[Z < (In4 — 4)/1] = P(Z <-2.61) = .0045.
b. P(Y > 8) = P(X > In8) = P[Z > (In8 — 4)/1] = P(Z > ~1.92) = .9726.

a. E(Y)=e""? =¢'" (598.74 g), V(Y) = e”(e'"° -1)107*.
b. With k = 2, the interval is given by E(Y) + 2.V (Y) or 598.74 + 3,569,038.7. Since the

weights must be positive, the final interval is (0, 3,570,236.1)
c. P(Y <598.74) = P(InY < 6.3948) = P[Z < (6.3948 — 3)/4] = P(Z < .8487) = .8020

0 0 0 o
The mgf forY is m, (t) =E(e") = %J.etyeydy +%J'etye‘ydy = %_fe““”dy +§J’e‘y“‘”dy :
o 0 Es) 0

This simplifies to m, (t)=—. Using this, E(Y) = m'(t)],_, =—2-|_, =0.

(1-t%)

a [f(yydy=a[f(ydy+1-a)[f,(ydy=a+@-a)=1.

b, LE(Y)=[yf(y)dy =a [ yf,(y)dy+(1-a) [ yf,(y)dy =ap, +(1-a),

—o0

i E(Y,) =a [y fi(ydy+(1-a) [y* f,(y)dy =a(u] +o})+(1-a)u3 +53). So,

V(Y) = E(Y*) - [E(Y)]* = a(u] +07)+(1-a)(u; +03)—[ap, +(1-a)u,]*, which
simplifies to ac’ +(1-a)os +a(l—a)u, —u, 1’

o
2Ju

0 2 o0
E(Y)= J-zie_yz/“dy = x/aj'u”ze‘“du =Jal(3/2) = w. Using similar methods,
0 o 0

Form=2, E(Y)= I yﬂe_yz/“dy. Let u=y%o. Then, dy = du. Then,
a
0

2
it can be shown that E(Y?)=a so that V(Y) =0 — {@} = o{l —g} , since it will

be shown in Ex. 4.196 that ['(1/2) = v/ .
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4.187 The density for Y = the life length of a resistor (in thousands of hours) is
f(y)=5—, y>0.

a. P(Y>5)= j”e "y = eV 0] —e = 082,
5
b. Let X =# of resistors that burn out prior to 5000 hours. Thus, X is a binomial random
variable with n =3 and p = .082. Then, P(X = 1) = 3(1 —.082)(.082)* = .0186.

4.188 a. This is the exponential distribution with B = a.
b. Using the substitution u=y"/a in the integrals below, we find:

o0

E(Y)=[2yme”" “dy = a”mju”m edu=a'"T(1+1/m)

0

E(Y?)= J' y™le " edy = a2/mju2/m eldu=a""T(1+2/m).
0

Thus,
VY)=a”"[[A+2/m)+T*(1+1/m)].

4.189 Since this density is symmetric about 0, so using the result from Ex. 4.27, E(Y) = 0.
Also, it is clear that V(Y) = E(Y?). Thus,

1 . B(3/2,(n-2)/2 1

BV =] B(1/2 (n—2)/2)y2(1_y2)( iy = B((I/Z ((n 23/2)) n—1
-1 H

equality follows after making the substitution U = y .

= V(Y). This

4.190 a. For the exponential distribution, f(t)=4e™" and F(t)=1-e™'. Thus, r(t) = 1/[3

b. For the Weibull, f(y)="—e"'*and F(y)=1-e"*'*. Thus, r(t)=
an increasing function of t When m>1.

P(c<Y<y) F(y)-F(c)

P(Y>c)  1-F(c)
b. Refer to the properties of distribution functions; namely, show G(-o0) =0, G(x) =1,
and for constants a and b such that a<b, G(a) < G(b).

4191 a.G(y)=P(Y <y|Y=>c)=

c. It is given that F(y)=1—e"Y"*. Thus, by using the result in part b above,

1_e412/3 —(1—6722/2

-4
—22/2 :
e

=l-e

PiY<4|Y>=2)=

4192 a. E(V)=4n(:1 3’/2J.V3e“’2(””2'mdv To evaluate this integral, let u = v?(5%-) so that

dv = /28T I—du to obtain E(V)= 21/2r§gjue‘”du 2T (@) =23
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4.193

4.194

4.195

4.196

4.197

b. EEmV?)=1mEV?)=2mm(: )3/zjv4e‘vz(m/2KT)dv . Here, let u= v?(32) so that
0

dv = /25" 5=du to obtain E(zmV )= 2EI(3) =3 KT (here, we again used the result

from Ex. 4.196 where it is shown that ['(1/2) = \/E).

For f(y)=5e""", we have that F(y)=1-¢""""". Thus,
E(Y |Y zsm:#[%f’dy:lso.
50

Note that this value is 50 + 100, where 100 is the (unconditional) mean of Y. This
illustrates the memoryless property of the exponential distribution.

[ﬁ J-Ef(”z)”y2 dy}{ﬁ J.e*(”z)”X2 dx} =L j '[e’(”z)”("z*yz)dxdy . By changing to polar

—00 —00 —00

coordinates, X* + y* = r* and dxdy = rdrd0. Thus, the desired integral becomes

21 o

[ [e > rdrdo =1
00
Note that the result proves that the standard normal density integrates to 1 with u = 1.
a. First note that W = (Z* + 32)* = Z* + 6Z° + 9Z>. The odd moments of the standard
normal are equal to 0, and E(Z?) = V(Z) + [E(Z)]*=1 + 0 = 1. Also, using the result in
Ex. 4.199, E(Z") = 3 so that E(W) =3 + 9(1) = 12.

b. Applying Ex. 4.198 and the result in part a:
PW <w)>1-£ =9,
so that w = 120.

r{a/2)= j y?e7Vdy = Iﬁe‘“““z dx = ﬁ\/ﬁjﬁe‘“”“z dx = 24/n[t]=+/n (relating
0 0 0

the last integral to that P(Z > 0), where Z is a standard normal random variable).

a. Let y = sin®0, so that dy = 2sinfcos0df. Thus,
1

/2 n/2

B(a,p) = j vy (1—y)dy =2 Isin“‘2 0(1—sin’0)"'do =2 J.sinz‘)‘_1 Bcos* ' d0, using
0 0 0

the trig identity 1—sin” 0 =cos’ 0.
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b. Following the text, I'(a)[(B) = I y“‘le‘ydyjzﬁ‘le‘zdz = I j y* 'z 'e”*dydz . Now,
0 0 00

use the transformation y =r”cos’ 0, X =r>sin’> 0 so that dydz =4r’ cosfsin0.
Following this and using the result in part a, we find

I'(a)[(B) = B(a, ﬁ)T r2@$De " rdr |

A final transformation with x = r? gives T'(a)['(B) = B(a,p)['(o.+P) , proving the result.

Note that

E[gM1= [lan | fdy= [lgy)| f(y)dy > [kf(y)dy =kP(g(¥)[>k),
—© lg(y)>k l9(y)>k
Since | g(y)|> k for this integral. Therefore,

Plag(V)Isk)=1-E(g(Y)D/k.

a. Define g(y)=y*'e”’"’? for positive integer values of i. Observe that g(-y) =—g(y)
so that g(y) is an odd function. The expected value E(Zz'_l) can be written

asE(Zz"™") = J-ﬁg(y)dy which is thus equal to 0.

b. Now, define h(y)= yZie_yz/ > for positive integer values of i. Observe that
h(-y) =h(y) so that h(y) is an even function. The expected value E(Z*') can be written

asE(Z%) = J.J;? h(y)dy = J.ﬁh(y)dy . Therefore, the integral becomes
- 0

E(Z™) = [F-yYe” Pdy =4 [2'w e dw = L2'T(i +1/2).
0 0

In the last integral, we applied the transformation w = z%/2.

c. E(Z*)=-2'T(1+1/2)=-2'(1/20n =1
E(Z*)=-L2"T(2+1/2)=-L22(3/2)(1/2)n =3
E(Z6):ﬁ23r(3+1/2):ﬁ23(5/2)(3/2)(1/2)\/;=15
E(Z°)=-L2'T(4+1/2)=-L2*(7/2)(5/2)(3/2)(1/2)Jr =105.

d. The result follows from:

T1@i-D=[2(i-1/2) =2‘]i'[(j —1/2)=2' T +1/2)(L)=E2™).
j=i j=i j=i
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4200 a E(Y?)= b j y" e 1=y Y = ot ), = Tt
b. The value o + a inust be positive in the beta density.
c. Witha =1, E(Y')=Febrie _ o
d. Witha=1/2, E(Y"?) = Kbz
e Witha=—1, E(Y ") =f&hieg—abd o>

: — =1/2 T'(o+p)(a-1/2
Witha=-1/2, E(Y ""?) = g5l 0> 1/2

: _ -2y _ F(a+p)'(a=2) _ (a+p-D(o+p-2)
Witha=-2, E(Y ") = Tty = (aa > ¢~ 2.




