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Chapter 7: Sampling Distributions and the Central Limit Theorem 
 
7.1 a. – c. Answers vary.  

d. The histogram exhibits a mound shape.  The sample mean should be close to 3.5 = μ 
e. The standard deviation should be close to σ/ 3  = 1.708/ 3  = .9860. 
f. Very similar pictures. 
 

7.2 a. P(Y = 2) = P(W = 6) = p(4, 1, 1) + p(1, 4, 1) + p(1, 1, 4) + p(3, 2, 1) + p(3, 1, 2)  
  = p(2, 3, 1) + p(2, 1, 3) + p(1, 3, 2)+ p(1, 2, 3) + p(2, 2, 2) = 216

10 . 
b. Answers vary, but the relative frequency should be fairly close. 
c. The relative frequency should be even closer than what was observed in part b. 
 

7.3 a. The histogram should be similar in shape, but this histogram has a smaller spread. 
b. Answers vary. 
c. The normal curve should approximate the histogram fairly well. 
 

7.4 a. The histogram has a right–skewed shape.  It appears to follow p(y) = y/21, y = 1, …, 6. 
b. From the Stat Report window, μ = 2.667, σ = 1.491. 
c. Answers vary. 
d. i. It has a right–skewed shape.    ii. The mean is larger, but the std. dev. is smaller. 
e.  i. sample mean = 2.667, sample std. dev = 1.491/ 12  = .4304. 
 ii. The histogram is closely mound shaped. 
 iii. Very close indeed. 
 

7.5 a. Answers vary. 
b. Answers vary, but the means are probably not equal. 
c. The sample mean values cluster around the population mean. 
d. The theoretical standard deviation for the sample mean is 6.03/ 5  = 2.6967. 
e. The histogram has a mound shape. 
f. Yes. 
 

7.6 The larger the sample size, the smaller the spread of the histogram.  The normal curves 
approximate the histograms equally well. 

 
7.7 a. – b. Answers vary. 

c. The mean should be close to the population variance 
d. The sampling distribution is not mound–shaped for this case. 
e. The theoretical density should fit well. 
f. Yes, because the chi–square density is right–skewed. 
 

7.8 a. σ2 = (6.03)2 = 36.3609. 
b. The two histograms have similar shapes, but the histogram generated from the smaller 
sample size exhibits a greater spread.  The means are similar (and close to the value 
found in part a).  The theoretical density should fit well in both cases. 
c. The histogram generated with n = 50 exhibits a mound shape.  Here, the theoretical 
density is chi–square with ν = 50 – 1 = 49 degrees of freedom (a large value). 
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7.9 a. P(|Y – μ| ≤ .3) = P(–1.2 ≤ Z ≤ 1.2) = .7698. 
b. P(|Y – μ| ≤ .3) = P(–.3 n  ≤ Z ≤ .3 n ) = 1 – 2P(Z > .3 n ).  For n = 25, 36, 69, and 
64, the probabilities are (respectively) .8664, .9284, .9642, and .9836. 
c. The probabilities increase with n, which is intuitive since the variance of Y decreases 
with n. 
d. Yes, these results are consistent since the probability was less than .95 for values of n 
less than 43. 

 
7.10 a. P(|Y – μ| ≤ .3) = P(–.15 n  ≤ Z ≤ .15 n ) = 1 – 2P(Z > .15 n ).  For n = 9, the 

probability is .3472 (a smaller value). 
b.  For n = 25: P(|Y – μ| ≤ .3) = 1 – 2P(Z > .75) = .5468 

For n = 36: P(|Y – μ| ≤ .3) = 1 – 2P(Z > .9) = .6318 
For n = 49: P(|Y – μ| ≤ .3) = 1 – 2P(Z > 1.05) = .7062 
For n = 64: P(|Y – μ| ≤ .3) = 1 – 2P(Z > 1.2) = .7698 

 c. The probabilities increase with n. 
 d. The probabilities are smaller with a larger standard deviation (more diffuse density). 
 
7.11 P(|Y – μ| ≤ 2) = P(–1.5 ≤ Z ≤ 1.5) = 1 – 2P(Z > 1.5) = 1 – 2(.0668) = .8664. 
  
7.12 From Ex. 7.11, we require P(|Y – μ| ≤ 1) = P(–.25 n  ≤ Z ≤ .25 n ) = .90.  This will be 

solved by taking .25 n  = 1.645, so n = 43.296.  Hence, sample 44 trees. 
 
7.13 Similar to Ex. 7.11: P(|Y – μ| ≤ .5) = P(–2.5 ≤ Z ≤ 2.5) = .9876. 
 
7.14 Similar to Ex. 7.12: we require P(|Y – μ| ≤ .5) = P(– n

4.
5.  ≤ Z ≤ n

4.
5. ) = .95.  Thus, 

n
4.

5.  = 1.96 so that n = 6.15.  Hence, run 7 tests. 
 
7.15 Using Theorems 6.3 and 7.1: 

a. 21)( μ−μ=−YXE . 
b. nmYXV //)( 2

2
2
1 σ+σ=− . 

c. It is required that )1|)((| 21 ≤μ−μ−−YXP  = .95.  Using the result in part b for 
standardization with n = m, 5.2and,2 2

2
2
1 =σ=σ , we obtain n = 17.29.  Thus, the two 

sample sizes should be at least 18. 
 

7.16 Following the result in Ex. 7.15 and since the two population means are equal, we find 
)()1(

10
8.

10
4.

10
8.

10
4.

1
++

− ≥=≥− BA YX
BA PYXP  = P(Z ≥ 2.89) = .0019. 

 
7.17 (P 66

1
2 ≤∑ =i iZ ) = .57681. 

 
7.18 )279()3( 22 ≥=≥ SPSP  = .0014. 
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7.19 Given that s2 = .065 and n = 10, suppose σ2 = .04.  The probability of observing a value 
of s2 that is as extreme or more so is given by 

P(S2 ≥ .065) = P(9S2/.04 ≥ 9(.065)/.04) = P(9S2/.04 ≥ 14.925) = .10 
Thus, it is fairly unlikely, so this casts some doubt that σ2 = .04. 
 

7.20 a. Using the fact that the chi–square distribution is a special case of the gamma 
distribution, E(U) = ν, V(U) = 2ν. 
b. Using Theorem 7.3 and the result from part a: 

=−== −
σ

σ
−

−
σ )1()()( 1

21
1

2 2

2

2 nSESE n
n

n  σ2.  

      ( ) ( ) [ ]=−== −
σ

σ
−

−
σ )1(2)()(

2
1

212
1

2 2

2

2 nSVSV n
n

n 2σ4/(n – 1). 
 

7.21 These values can be found by using percentiles from the chi–square distribution.   
With σ2 = 1.4 and n = 20, 2

4.1
19 S  has a chi–square distribution with 19 degrees of freedom. 

a. )()( 22
1212 bSPbSP nn

σ
−

σ
− ≤=≤ )( 4.1

192
4.1

19 bSP ≤=  = .975.  It must be true that 
8523.324.1

19 =b , the 97.5%-tile of this chi–square distribution, and so b = 2.42. 
 
b. Similarly, )()( 22

1212 aSPaSP nn
σ
−

σ
− ≥=≥  = .974.  Thus, 96055.84.1

19 =a , the 2.5%-tile 
of this chi–square distribution, and so a = .656. 

 
c. )( 2 bSaP ≤≤  = .95. 
   

7.22 a. The corresponding gamma densities with parameters (α, β) are (5, 2), (20, 2), (40, 2), 
respectively. 
b. The chi–square densities become more symmetric with larger values of ν. 
c. They are the same. 
d. Not surprising, given the answer to part b. 
 

7.23 a. The three probabilities are found to be .44049, .47026, and .47898, respectively. 
b. As the degrees of freedom increase, so do the probabilities. 
c. Since the density is becoming more symmetric, the probability is approaching .5. 
 

7.24 a. .05097 
b. .05097 
c. 1 – 2(.05097) = .8806. 
d. The t–distribution with 5 degrees of freedom exhibits greater variability. 
  

7.25 a. Using Table 5, t.10 = 1.476.  Using the applet, t.10 = 1.47588. 
b. The value t.10 is the 90th percentile/quantile. 
c. The values are 1.31042, 1.29582, 1.28865, respectively. 
d. The t–distribution exhibits greater variability than the standard normal, so the 
percentiles are more extreme than z.10. 
e. As the degrees of freedom increase, the t–distribution approaches the standard normal 
distribution. 
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7.26 From Definition 7.2, 
)()( 21

21 S
gn

S
gn TPgYgP ≤≤=≤μ−≤  = .90.  Thus, it must be true that 05.

1 tS
gn −=  and 

05.
2 tS

gn = .  Thus, with n = 9 and t.05 = 1.86, SgSg 3
86.1

23
86.1

1 , =−= . 
 

7.27 By Definition 7.3, 2
2

2
1 / SS  has an F–distribution with 5 numerator and 9 denominator 

degrees of freedom.  Then, 
a. P( 2

2
2
1 / SS  > 2) = .17271. 

b. P( 2
2

2
1 / SS  < .5) = .23041. 

c. P( 2
2

2
1 / SS  > 2) + P( 2

2
2
1 / SS  < .5) = .17271 + .23041 = .40312. 

 
7.28 a. Using Table 7, F.025 = 6.23. 

b. The value F.025 is the 97.5%-tile/quantile. 
 c. Using the applet, F.975 = .10873. 
 d. Using the applet, F.025 = 9.19731. 
 e. The relationship is 1/.10873 ≈ 9.19731. 

 
7.29 By Definition 7.3, Y = )/()/( 2211 ν÷ν WW  has an F distribution with ν1 numerator and ν2 

denominator degrees of freedom.  Therefore, U = 1/Y = )/()/( 1122 ν÷ν WW  has an F 
distribution with ν2 numerator and ν1 denominator degrees of freedom. 

 
7.30 a. E(Z) = 0, E(Z2) = V(Z) + [E(Z)]2 = 1. 

b. This is very similar to Ex. 5.86, part a.  Using that result, it is clear that  
i. E(T) = 0   
ii. V(T) = E(T2) = νE(Z2/Y) = ν/(ν–2), ν > 2. 
 
 

7.31 a. The values for F.01 are 5.99, 4.89, 4.02, 3.65, 3.48, and 3.32, respectively. 
b. The values for F.01 are decreasing as the denominator degrees of freedom increase. 
c. From Table 6, 2767.132

01. =χ . 
d. 13.2767/3.32 ≈ 4.  This follows from the fact that the F ratio as given in Definition 7.3 
converges to W1/ ν1 as ν2 increases without bound. 
 

7.32 a. Using the applet, t.05 = 2.01505. 
b. 10.)()()( 05.05.

2
05.

2 =−<+>=> tTPtTPtTP . 
c. Using the applet, F.10 = 4.06042. 
d. F.10 = 4.06042 = (2.01505)2 = 2

05.t . 

e. Let F = T2.  Then, )()()()(10. 10.10.10.
2

10. FTPFTPFTPFFP >+−<=>=>= .  
This must be equal to the expression given in part b. 
 

7.33 Define T = ν// WZ  as in Definition 7.2.  Then, )//(22 ν= WZT .  Since Z2 has a chi–
square distribution with 1 degree of freedom, and Z and W are independent, T2 has an F 
distribution with 1 numerator and ν denominator degrees of freedom. 
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7.34 This exercise is very similar to Ex. 5.86, part b.  Using that result, is can be shown that 
a. ×== ν

ν−
ν
ν

1

2

1

2 )()()( 1
21 WEWEFE ( ) )2/( 2222

1 −νν=−ν
ν , ν2 > 2. 

b. ( ) ( )22
2

2
2

1
222

2

2

1

2 )()()]([)()( −ν
−

ν
ν −=−= vWEWEFEFEFV  

         = ( ) )4)(2(
1

11
2

221

2 )2( −ν−νν
ν +νν  – ( )222

2
−ν

v  

         = [ ] [ ])4()2(/)2(2 2
2

2121
2
2 −ν−νν−ν+νν , ν2 > 4. 

 
 

7.35 Using the result from Ex. 7.34, 
a. E(F) = 70/(70–2) = 1.029. 
b. V(F) = [2(70)2(118)]/[50(68)2(66)] = .076 
c. Note that the value 3 is (3 – 1.029)/ 076.  = 7.15 standard deviations above this 

mean.  This represents and unlikely value. 
 
 
7.36 We are given that 2

2
2
1 2σ=σ .  Thus, 2/ 2

2
2
1 =σσ  and )2/( 2

2
2
1 SS  has an F distribution with 

10 – 1 = 9 numerator and 8 – 1 = 7 denominator degrees of freedom. 
a. We have P( 2

2
2
1 / SS  ≤ b) = P( )2/( 2

2
2
1 SS  ≤ b/2) = .95.  It must be that b/2 = F.05 = 3.68, 

so b = 7.36. 
b. Similarly, a/2 = F.95, but we must use the relation a/2 = 1/F.05, where F.05 is the 95th 

percentile of the F distribution with 7 numerator and 9 denominator degrees of 
freedom (see Ex. 7.29).  Thus, with F.05 = 3.29 = .304, a/2 = 2/3.29 = .608. 

c. P(.608 ≤ 2
2

2
1 / SS  ≤ 7.36) = .90. 

 
 

7.37 a. By Theorem 7.2, χ2 with 5 degrees of freedom. 
b. By Theorem 7.3, χ2 with 4 degrees of freedom (recall that σ2 = 1). 
c. Since 2

6Y  is distributed as χ2 with 1 degrees of freedom, and ∑=
−

5

1
2)(

i i YY and 2
6Y  are 

independent, the distribution of W + U is χ2 with 4 + 1 = 5 degrees of freedom. 
 
 

7.38 a. By Definition 7.2, t–distribution with 5 degrees of freedom. 
b. By Definition 7.2, t–distribution with 4 degrees of freedom. 
c. Y  follows a normal distribution with μ = 0, σ2 = 1/5.  So, Y5  is standard normal and 

( )25Y  is chi–square with 1 degree of freedom.  Therefore, 25Y  + 2
6Y  has a chi–square 

distribution with 2 degrees of freedom (the two random variables are independent).  Now, 
the quotient 

]4/[]2/)5[(/)5(2 2
6

22
6

2 UYYUYY ÷+=+  
has an F-distribution with 2 numerator and 4 denominator degrees of freedom.   
 
Note: we have assumed that Y  and U are independent (as in Theorem 7.3). 
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7.39 a. Note that for i = 1, 2, …, k, the iX  have independent a normal distributions with mean 

μi and variance σ/ni.  Since θ̂ , a linear combination of independent normal random 
variables, by Theorem 6.3 θ̂  has a normal distribution with mean given by 

∑=
μ=++=θ

k

i iikk cXcXcEE
111 )...()ˆ(  

and variance 

∑=
σ=++=θ

k

i iikk ncXcXcVV
1

222
11 /)...()ˆ( . 

 
b. For i = 1, 2, …, k, 22 /)1( σ− ii Sn  follows a chi–square distribution with ni – 1 degrees 
of freedom.  In addition, since the 2

iS  are independent, 
2

1
2

2 /)1( σ−=
σ ∑ =

k

i ii SnSSE  

is a sum of independent chi–square variables.  Thus, the above quantity is also distributed 
as chi–square with degrees of freedom ∑∑ ==

−=−
k

i i
k

i i knn
11

.)1(  
 

c. From part a, we have that
∑=

σ

θ−θ
k

i ii nc
1

22 /

ˆ
 

has a standard normal distribution.  Therefore, by Definition 7.2, a random variable 
constructed as 

∑
∑

∑ =

=

=
−

σ−

σ

θ−θ
k

i i

k

i ii

k

i ii
kn

Sn

nc 1

2
1

2

1
22

/)1(

/

ˆ
 = 

∑=

θ−θ
k

i ii nc
1

22 /MSE

ˆ
 

has the t–distribution with ∑=
−

k

i i kn
1

 degrees of freedom.  Here, we are assuming that θ̂  

and SSE are independent (similar to Y  and S2 as in Theorem 7.3). 
 

7.40 a. Both histograms are centered about the mean M = 16.50, but the variation is larger for 
sample means of size 1. 
b. For sample means of size 1, the histogram closely resembles the population.  For 
sample means of size 3, the histogram resembles the shape of the population but the 
variability is smaller. 
c. Yes, the means are very close and the standard deviations are related by a scale of 3 . 
d. The normal densities approximate the histograms fairly well. 
e. The normal density has the best approximation for the sample size of 25. 
 

7.41 a. For sample means of size 1, the histogram closely resembles the population.  For 
sample means of size 3, the histogram resembles that of a multi–modal population.  The 
means and standard deviations follow the result of Ex. 7.40 (c), but the normal densities 
are not appropriate for either case.  The normal density is better with n = 10, but it is best 
with n = 25. 
b. For the “U–shaped population,” the probability is greatest in the two extremes in the 
distribution.  
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7.42 Let Y  denote the sample mean strength of 100 random selected pieces of glass.  Thus, 
the quantity (Y – 14.5)/.2 has an approximate standard normal distribution. 

 
a. P(Y > 14) ≈ P(Z > 2.5) = .0062. 
b. We have that P(–1.96 < Z < 1.96) = .95.  So, denoting the required interval as (a, b) 

such that P(a < Y < b) = .95, we have that  –1.96 = (a – 14)/.2 and 1.96 = (b – 14)/.2.  
Thus, a = 13.608, b = 14.392. 

 
7.43 Let Y  denote the mean height and σ = 2.5 inches.  By the Central Limit Theorem, 

)22()()5.5.()5.|(| 5.2
)10(5

5.2
)10(5. ≤≤−=≤≤≈≤μ−≤−=≤μ− −− ZPZPYPYP  = .9544. 

 
7.44 Following Ex. 7.43, we now require 

=≤≤≈≤μ−≤−=≤μ− − )()4.4.()4.|(| 5.2
5

5.2
5. nn ZPYPYP .95. 

Thus, it must be true that 5.2
5 n  = 1.96, or n = 150.0625.  So, 151 men should be sampled. 

 
7.45 Let Y  denote the mean wage calculated from a sample of 64 workers.  Then, 

0548.)60.1()()90.6( 5.
)00.790.6(8 =−≤=≤≈≤ − ZPZPYP . 

 
7.46 With n = 40 and σ ≈ (range)/4 = (8 – 5)/4 = .75, the approximation is 

.9090.)69.169.1()|(|)2.|(| 75.
)2(.40 =≤≤−=≤≈≤μ− ZPZPYP  
 

7.47 (Similar to Ex. 7.44).  Following Ex. 7.47, we require 
.90.)|(|)1.|(| 75.

)1(. =≤≈≤μ− nZPYP  

Thus, we have that 75.
)1(.n  = 1.645, so n = 152.21.  Therefore, 153 core samples should be 

taken. 
 

7.48 a. Although the population is not normally distributed, with n = 35 the sampling 
distribution of Y  will be approximately normal.  The probability of interest is 

)11()1|(| ≤μ−≤−=≤μ− YPYP . 
In order to evaluate this probability, the population standard deviation σ is needed.  Since 
it is unknown, we will estimate its value by using the sample standard deviation s = 12 so 
that the estimated standard deviation of Y  is 12/ 35  = 2.028.  Thus, 

)49.49.()()11()1|(| 028.2
1

028.2
1 ≤≤−=≤≤−≈≤μ−≤−=≤μ− ZPZPYPYP  = .3758. 

 
b. No, the measurements are still only estimates. 

 
7.49 With μ = 1.4 hours, σ = .7 hour, let Y  = mean service time for n = 50 cars.  Then, 

)02.2()()6.1( 7.
)1416(50 >=>≈> − ZPZPYP  = .0217. 

 
7.50 We have )11()|(|)1|(|

/
1 <<−=<=<μ−

σ
ZPZPYP

n
 = .6826. 
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7.51 We require )()|(|)1|(|
/10
1

/10
1

/
1

nnn
ZPZPYP <<−=<=<μ−

σ
 = .99.  Thus it must be 

true that 
n/10

1  = z.005 = 2.576.  So, n = 663.57, or 664 measurements should be taken. 
 
7.52 Let Y  denote the average resistance for the 25 resistors.  With μ = 200 and σ = 10 ohms, 

a. P(199 ≤ Y ≤ 202) ≈ P(–.5 ≤ Z ≤ 1) = .5328. 
b. Let X = total resistance of the 25 resistors.  Then, 

P(X ≤ 5100) = P(Y ≤ 204) ≈ P(Z ≤ 2) = .9772. 
 
7.53 a. With these given values for μ and σ, note that the value 0 has a z–score of (0 – 12)/9 = 

1.33.  This is not considered extreme, and yet this is the smallest possible value for CO 
concentration in air.  So, a normal distribution is not possible for these measurements. 
b. Y  is approximately normal: )22.2()()14( 9

)1214(100 >=>≈> − ZPZPYP  = .0132. 
 

7.54 0)10()()3.1( 05.
)4.13.1(25 ≈−<=<≈< − ZPZPYP , so it is very unlikely. 

 
7.55 a.  i.   We assume that we have a random sample 

ii.   Note that the standard deviation for the sample mean is .8/ 30  = .146.  The 
endpoints of the interval (1, 5) are substantially beyond 3 standard deviations 
from the mean.  Thus, the probability is approximately 1. 

 
 b. Let Yi denote the downtime for day i, i = 1, 2, …, 30.  Then, 

)14.1()()833.3()115( 8.
)4833.3(3030

1
−<=<≈<=< −

=∑ ZPZPYPYP
i i  = .1271. 

 
7.56 Let Yi denote the volume for sample i, i = 1, 2, …, 30.  We require 

95.)()()200( 2
)4(50

50
20050

1
=<≈μ−<μ−=> μ−

=∑ ZPYPYP
i i . 

Thus, 05.2
)4(50 z−=μ−  = –1.645, and then μ = 4.47. 

 
7.57 Let Yi denote the lifetime of the ith lamp, i = 1, 2, …, 25, and the mean and standard 

deviation are given as 50 and 4, respectively.  The random variable of interest is ∑=

25

1i iY , 
which is the lifetime of the lamp system.  So, 

P(∑=

25

1i iY ≥ 1300) = P(Y ≥ 52) ≈ .0062.)5.2()( 4
)5052(25 =≥=≥ − ZPZP  

 
7.58 For Wi = Xi – Yi, we have that E(Wi) = E(Xi) – E(Yi) = μ1 – μ2 and V(Wi) = V(Xi) – V(Yi) = 

2
2

2
1 σ+σ  since Xi and Yi are independent.  Thus, YXYXWW n

i iin
n

i in −=−== ∑∑ == 1
1

1
1 )(  

so )(WE  = μ1 – μ2, and )(WV  = n/)( 2
2

2
1 σ+σ .  Thus, since the Wi are independent, 

)(
)(

/)(
)()(

2
2

2
1

21

WV
WEW

n
YXU n

−
=

σ+σ

μ−μ−−
=  

 
satisfies the conditions of Theorem 7.4 and has a limiting standard normal distribution. 
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7.59 Using the result of Ex. 7.58, we have that n = 50, σ1 = σ2 = 2 and μ1 = μ2.  Let X  denote 
the mean time for operator A and let Y  denote the mean time for operator B (both 
measured in seconds) Then, operator A will get the job if X  – Y  < –1.  This probability 
is 

P( X  – Y < –1) ≈ ( ) )5.2(
50/)44(

1 −<=<
+
− ZPZP  = .0062. 

 
7.60 Extending the result from Ex. 7.58, let X  denote the mean measurement for soil A and 

Y  the mean measurement for soil B.  Then, we require 

[ ] [ ]5.205.)(
100
02.

50
01.
05.

21 ≤=⎥⎦
⎤

⎢⎣
⎡ ≤≈≤μ−μ−−

+
ZPZPYXP  = .9876. 

 
7.61 It is necessary to have 

[ ] [ ] 90.04.)(
02.01.

05.05.
21 02.01. =≤=⎥⎦

⎤
⎢⎣
⎡ ≤≈≤μ−μ−−

++

nZPZPYXP
nn

. 

Thus, 645.105.02.01.
05. ==
+

zn , so n = 50.74.  Each sample size must be at least n = 51. 
 

7.62 Let Yi represent the time required to process the ith person’s order, i = 1, 2, …, 100.  We 
have that μ = 2.5 minutes and σ = 2 minutes.  So, since 4 hours = 240 minutes, 

=−>=>≈>=> −
=∑ )5.()()4.2()240( 2

)5.24.2(100100

1
ZPZPYPYP

i i .6915. 
 

7.63 Following Ex. 7.62, consider the relationship )120(
1

<∑ =

n

i iYP  = .1 as a function of n: 

Then, )()/120()120( 2
)5.2/120(

1
−

=
<≈<=<∑ nnn

i i ZPnYPYP  = .1.  So, we have that 

2
)5.2/120( −nn  = –z.10 = –1.282. 

Solving this nonlinear relationship (for example, this can be expressed as a quadratic 
relation in n ), we find that  n = 55.65 so we should take a sample of 56 customers. 

 
7.64 a. two.   

b. exact: .27353, normal approximation: .27014 
c. this is the continuity correction 
 

7.65 a. exact: .91854, normal approximation: .86396. 
b. the mass function does not resemble a mound–shaped distribution (n is not large here). 
 

7.66 Since P(|Y – E(Y)| ≤ 1) = P(E(Y) – 1 ≤ Y ≤ E(Y) + 1) = P(np – 1 ≤ Y ≤ np + 1), if n = 20 
and p = .1, P(1 ≤ Y ≤ 3) = .74547.  Normal Approximation: .73645. 

 
7.67 a. n = 5 (exact: ..99968, approximate: .95319), n = 10 (exact: ..99363, approximate: 

.97312), n = 15 (exact: .98194, approximate: .97613), n = 20 (exact: .96786, 
approximate: .96886). 
b. The binomial histograms appear more mound shaped with increasing values of n.  The 
exact and approximate probabilities are closer for larger n values. 
c. rule of thumb: n > 9(.8/.2) = 36, which is conservative since n = 20 is quite good. 
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7.68 a. The probability of interest is P(Y ≥ 29), where Y has a binomial distribution with n = 
50 and p = .48.  Exact: .10135, approximate: .10137. 
b. The two probabilities are close.  With n = 50 and p = .48, the binomial histogram is 
mound shaped. 
 

7.69 a. Probably not, since current residents would have learned their lesson. 
b. (Answers vary).  With b = 32, we have exact: ..03268, approximate: .03289. 
 

7.70 a. nqpqnpqqnpqnpqp <⇔<⇔<⇔<+ /9/9/31/3 2 . 

b. npqpnpqpnpqnpqp <⇔<⇔<⇔<− /9/9/31/3 2 . 

c. Parts a and b imply that ( )p
q

q
pn ,max9> , and it is trivial to show that  

( ) ),min(
),max(,max qp

qp
p
q

q
p =  (consider the three cases where qpqpqp <>= ,, . 

 
7.71 a. n > 9. 

b. n > 14, n > 14, n > 36, n > 36, n > 891, n > 8991. 
 

7.72 Using the normal approximation, )()15(
)9)(.1(.100

105.14 −≥≈≥ ZPYP  = P(Z ≥ 1.5) = .0668. 

  
7.73 Let Y = # the show up for a flight.  Then, Y is binomial with n = 160 and p = .95.  The 

probability of interest is P(Y ≤ 155), which gives the probability that the airline will be 
able to accommodate all passengers.  Using the normal approximation, this is 

8980.)27.1()()155(
)05)(.95(.160
)95(.1605.155 =≤=≤≈≤ − ZPZPYP . 

 
7.74 a. Note that calculating the exact probability is easier: with n = 1500, p = 1/410,  

P(Y ≥ 1) = 1 – P(Y = 0) = 1 – (409/410)1500 = .9504. 
b. Here, n = 1500, p = 1/64.  So, 

)()30(
0713.23

4375.235.30 −>≈> ZPYP  = P(Z > 1.47) = .0708. 

c. The value y = 30 is (30 – 23.4375)/ 0713.23  = 1.37 standard deviations above the 
mean.  This does not represent an unlikely value. 
 

7.75 Let Y = # the favor the bond issue.  Then, the probability of interest is 

( ) ( ) )2.12.1(06.06.06.
64

)8(.2.
64

)8(.2.
06.06. ≤≤−=⎟

⎠
⎞

⎜
⎝
⎛ ≤≤≈≤−≤−=≤− − ZPZPpPpP n

Y
n
Y  = .7698. 

 
7.76 a. We know that V(Y/n) = p(1 – p)/n.  Consider n fixed and let g(p) = p(1 – p)/n.  This 

function is maximized at p = 1/2 (verify using standard calculus techniques). 
 

b. It is necessary to have ( ) 95.1. =≤− pP n
Y , or approximately ( ) 95.

/
1. =≤

npq
ZP .  

Thus, it must be true that 
npq /

1.  = 1.96.  Since p is unknown, replace it with the value 1/2 

found in part a (this represents the “worse case scenario”) and solve for n.  In so doing, it 
is found that n = 96.04, so that 97 items should be sampled. 
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7.77 (Similar to Ex. 7.76).  Here, we must solve 
npq /

15.  = z.01 = 2.33.  Using p = 1/2, we find 

that n = 60.32, so 61 customers should be sampled. 
  
7.78 Following Ex. 7.77: if p = .9, then 

( ) ( ) 1)54.3(15.
50/)1(.9.

15. ≈≤=≤≈≤− ZPZPpP n
Y . 

 
7.79 a. Using the normal approximation: 

)67.()()5.1()2(
)9)(.1(.25

5.25.1 −≥=≥=≥=≥ − ZPZPYPYP  = .7486. 

b. Using the exact binomial probability: 
729.271.1)1(1)2( =−=≤−=≥ YPYP . 

 
7.80 Let Y = # in the sample that are younger than 31 years of age.  Since 31 is the median 

age, Y will have a binomial distribution with n = 100 and p = 1/2 (here, we are being 
rather lax about the specific age of 31 in the population).  Then, 

0287.)9.1()()5.59()60(
)5)(.5(.100

505.59 =≥=≥≈≥=≥ − ZPZPYPYP . 

 
7.81 Let Y = # of non–conforming items in our lot.  Thus, with n = 50: 

a. With p = .1, P(lot is accepted) = P(Y ≤ 5) = P(Y ≤ 5.5) = )(
)9)(.1(.50
)1(.505.5 −≤ZP = 

)24.( ≤ZP = .5948. 
b. With p = .2 and .3, the probabilities are .0559 and .0017 respectively. 
 

7.82 Let Y = # of disks with missing pulses.  Then, Y is binomial with n = 100 and p = .2.  
Thus, )38.1()()5.14()15(

)8)(.2(.100
)2(.1005.14 −≥=≥≈≥=≥ − ZPZPYPYP  = .9162. 

 
7.83 a. Let Y = # that turn right.  Then, Y is binomial with n = 50 and p = 1/3.  Using the 

applet, P(Y ≤ 15) = .36897. 
b. Let Y = # that turn (left or right).  Then, Y is binomial with n = 50 and p = 2/3.  Using 
the applet, P(Y ≥ (2/3)50) = P(Y ≥ 33.333) = P(Y ≥ 34) = .48679. 
 

7.84 a. ( ) 21
)()(

2

22

1

11

2

2

1

1

2

2

1

1 ppE n
pn

n
pn

n
YE

n
YE

n
Y

n
Y −=−=−=− . 

b. ( )
2

22

1

11
2

2

222
2

1

111
2

2

2
2

1

1

2

2

1

1 )()(
n

qp
n

qp
n

qpn
n

qpn
n

YV
n

YV
n
Y

n
YV +=+=+=− . 

 
7.85 It is given that p1 = .1 and p2 = .2.  Using the result of Ex. 7.58, we obtain 

( ) 8414.)4.1(1.)(
50

)8(.2.
50

)9(.1.2

2

1

1 1.
21 =≤=⎟

⎠
⎞

⎜
⎝
⎛ ≤≈≤−−−

+
ZPZPppP n

Y
n
Y . 

 
7.86 Let Y = # of travel vouchers that are improperly documented.  Then, Y has a binomial 

distribution with n = 100, p = .20.  Then, the probability of observing more than 30 is 
)()5.30()30(

)8)(.2(.100
)2(.1005.30 −>≈>=> ZPYPYP  = P(Z > 2.63) = .0043. 

We conclude that the claim is probably incorrect since this probability is very small. 
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7.87 Let X = waiting time over a 2–day period.  Then, X is exponential with β = 10 minutes.  
Let Y = # of customers whose waiting times is greater than 10 minutes.  Then, Y is 
binomial with n = 100 and p is given by 

1

10

10/
10
1 −

∞
− == ∫ edyep y  = .3679. 

Thus, )636.2(()50(
)6321)(.3679(.1000

)3697(.10050 ≥=≥≈≥ − ZPZPYP  = .0041. 

 
7.88 Since the efficiency measurements follow a normal distribution with mean μ = 9.5 

lumens and σ = .5 lumens, then  
Y  = mean efficiency of eight bulbs 

follows a normal distribution with mean  9.5 lumens and standard deviation .5/ 8 .  
Thus, )()10(

8/5.
5.910−>=> ZPYP  = P(Z > 2.83) = .0023. 

  
7.89 Following Ex. 7.88, it is necessary that )()10(

8/5.
10 μ−>=> ZPYP  = .80, where μ denotes 

the mean efficiency.  Thus, 84.2.8/5.
10 −==μ− z  so μ = 10.15. 

 
7.90 Denote Y = # of successful transplants.  Then, Y has a binomial distribution with n = 100 

and p = .65.  Then, using the normal approximation to the binomial, 
)15.1()()70(

)35)(.65(.100
)65(.10070 >=>≈> − ZPZPYP  = .1251. 

 
7.91 Since X, Y, and W are normally distributed, so are ,X  ,Y  and .W   In addition, by 

Theorem 6.3 U follows a normal distribution such that 
321 4.2.4.)( μ+μ+μ==μ UEU  

( ) ( ) ( )
3

2
3

2

2
2

1

2
1 16.04.16.)(2

nnnU UV σσσ ++==σ . 
 

7.92 The desired probability is  

[ ] [ ]50.6.
64/])4.6()4.6[(

06.
22 ≤=⎥⎦

⎤
⎢⎣
⎡ ≤=>−

+
ZPZPYXP  = .6170. 

 
7.93 Using the mgf approach, the mgf for the exponential distribution with mean θ is 

1)1()( −θ−= ttmY , t < 1/ θ. 
The mgf for U = 2Y/ θ is 

1)/2( )21()/2()()()( −θ −=θ=== ttmeEeEtm Y
YttU

U , t < 1/ 2. 
This is the mgf for the chi–square distribution with 2 degrees of freedom. 
 

7.94 Using the result from Ex. 7.93, the quantity 2Yi/20 is chi–square with 2 degrees of 
freedom.  Further, since the Yi are independent, ∑=

=
5

1
20/2

i iYU  is chi–square with 10 

degrees of freedom.  Thus, ( ) )( 10
5

1
c

i i UPcYP >=>∑ =
 = .05.  So, it must be true that 

2
05.10 χ=c  = 18.307, or c = 183.07. 
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7.95 a. Since μ = 0 and by Definition 2, 
10/S

YT =  has a t–distribution with 9 degrees of 

freedom.  Also, 2

2

2

2
2 10

10/ S
Y

S
YT ==  has an F–distribution with 1 numerator and 9 

denominator degrees of freedom (see Ex. 7.33).   
 

b. By Definition 3, 2

2
2

10Y
ST =−  has an F–distribution with 9 numerator and 1 

denominator degrees of freedom (see Ex. 7.29). 
 

c. With 9 numerator and 1 denominator degrees of freedom, F.05 = 240.5.  Thus, 

⎟
⎠
⎞

⎜
⎝
⎛ <<−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
<=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
<= 04.4904.4924055.240

10
95. 2

2

2

2

Y
SP

Y
SP

Y
SP , 

so c = 49.04. 
 

7.96 Note that Y has a beta distribution with α = 3 and β = 1.  So, μ = 3/4 and σ2 = 3/80.  By 
the Central Limit Theorem, )63.1()()7.(

40/0375.
75.7. −>=>≈> − ZPZPYP  = .9484. 

 
7.97 a. Since the Xi are independent and identically distributed chi–square random variables 

with 1 degree of freedom, if ∑=
=

n

i iXY
1

, then E(Y) = n and V(Y) = 2n.  Thus, the 
conditions of the Central Limit Theorem are satisfied and  

n
X

n
nYZ

/2
1

2
−

=
−

= . 

 
b. Since each Yi is normal with mean 6 and variance .2, we have that 

∑=

−
=

50

1

2

2.
)6(

i
iYU  

is chi–square with 50 degrees of freedom.  For i = 1, 2, …, 50, let Ci be the cost for a 
single rod,  Then, Ci = 4(Yi – 6)2 and the total cost is UCT

i i 8.50

1
==∑ =

.  By Ex. 7.97, 

( ) ( ) ( ) )1(
100

506060488.48 >=⎟
⎠

⎞
⎜
⎝

⎛ −
>≈>=>=> ZPZPUPUPTP  = .1587. 

 
7.98 a. Note that since Z has a standard normal distribution, the random variable Z/c also has a 

normal distribution with mean 0 and variance 1/c2 = ν/w.  Thus, we can write the 
conditional density of T given W = w as 

∞<<∞−= ν−
νπ

tewtf wtw ,)|( )2/(
2
1 2

. 
b. Since W has a chi–square distribution with ν degrees of freedom, 

( )2/12/
2)2/(

1)2/(
2
1

2/

2

)()|(),( wwtw ewewfwtfwtf −−ν
νΓ

ν−
νπ ν== . 

 
c. Integrating over w, we obtain 
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( ) ( )[ ] .1exp)( 1]2/)1[(
22)2/(

1

0

12/12/
2)2/(

1

0

)2/(
2
1 2

2/)1(2/

2

dwwdwewetf twwwtw −+ν
ννΓ

∞

πν
−−ν

νΓ

∞
ν−

νπ
+−== +νν ∫∫

 
Writing another way this is, 

( )
( ) ( )[ ] .1exp)( 1]2/)1[(

2/1
1

2
1

0
]2/)1[(

1
)2/(

]2/)1[(/1 2

2/)1(22/)1(

2/)1(2

dwwtf tw
t

t −+ν
νν+

∞

+νΓνΓ
+νΓ

πν
ν+ +−= +ν−+ν

+ν−

∫  

The integrand is that of a gamma density with shape parameter (ν+1)/2 and scale 
parameter [ ]ν+ /1/2 2t , so it must integrate to one.  Thus, the given form for )(tf  is 
correct. 
 

7.99 a. Similar to Ex. 7.98. For fixed W2 = w2, F = W1/c, where c = w2ν1/ν2.  To find this 
conditional density of F, note that the mgf for W1 is  

2/1

1
)21()( ν−−= ttmW . 

The mgf for F = W1/c is 
2/1

1
)/21()/()( ν−−== ctctmtm WF . 

Since this mgf is in the form of a gamma mgf, the conditional density of F, conditioned 
that W2 = w2, is gamma with shape parameter ν1 and scale parameter 2ν2/(w2ν1). 
 
b. Since W2 has a chi–square distribution with ν2 degrees of freedom, the joint density is 

( )( ) ( ) 2/
2

2/2
2

2/1)2/(
2

)2/(1)2/(

222
221

12

21

222121

2
)()|(),(

ννν

ν
νν

−−ννν−−ν

ΓΓ
==

w

wfw ewefwfwfgwfg  

            = ( )( ) ( ) 2/)(
2

2/
2

]1/)[2/(1]2/)[(
2

1)2/(

2121

1

21

212211

2 ν+ννν

ν
νν

+νν−−ν+ν−ν

ΓΓ

fwewf . 

c. Integrating over w2, we obtain, 

( )( ) ( ) ∫
∞

+νν−−ν+ν

ν+ννν

ν
νν

−ν

ΓΓ
=

0
2

]1/)[2/(1]2/)[(
22/)(

2
2/

2

1)2/(
21221

2121

1

21

1

2
)( dwewffg fw . 

The integrand can be related to a gamma density with shape parameter (ν1 + ν2)/2 and 
scale parameter ( ) 1

212
1 /1 −νν+ f  in order to evaluate the integral.  Thus: 

  
( )
( ) ( )

( )
( ) 2/)(2/

2/)(
21

1)2/(

22

2

211

1

2

211

21

21

2

/1)(
ν+νν

ν
ν

ν+ν−−ν

νν

ν+ν νν+
ΓΓ

Γ
=

fffg , f ≥ 0. 

 
7.100 The mgf for X is ( )1exp)( −λ= t

X etm . 
a. The mgf for ( ) λλ−= /XY  is given by 

( )λ−λ−λ=λ== λλ− tetmeeEtm t
X

ttY
Y

/exp)/()()( . 
 

b. Using the expansion as given, we have 
( )[ ] ( )++=+++λ+λ−=

λλλλ 2/1

32

2/3

32

6262 expexp)( ttttt
Y ttm . 
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As λ → ∞, all terms after the first in the series will go to zero so that the limiting form 
of the mgf is ( )2

2exp)( t
Y tm =  

 
c. Since the limiting mgf is the mgf of the standard normal distribution, by Theorem 7.5 

the result is proven. 
 
7.101 Using the result in Ex. 7.100, 

)1()()110(
100

100110 ≤=≤≈≤ − ZPZPXP  = .8413. 
 

7.102 Again use the result in Ex. 7.101, 
)5.1()()45(

36
3645 ≥=≥≈≥ − ZPZPYP  = .0668. 

 
7.103 Following the result in Ex. 7.101, and that X and Y are independent, the quantity 

21

21 )(
λ+λ

λ−λ−−YX  

has a limiting standard normal distribution (see Ex. 7.58 as applied to the Poisson).  
Therefore, the approximation is 

)1()10( >≈>− ZPYXP  = .1587. 
 

7.104 The mgf for Yn is given by 
[ ]nt

Y peptm
n

+−= 1)( . 
Let p = λ/n and this becomes 

[ ] [ ]nt
n

nt
nnY eetm

n
)1(11)( 1 −λ+=+−= λλ . 

As n → ∞, this is ( )1exp −λ te , the mgf for the Poisson with mean λ. 
 

7.105 Let Y = # of people that suffer an adverse reaction.  Then, Y is binomial with n = 1000 
and p = .001.  Using the result in Ex. 7.104, we let λ = 1000(.001) = 1 and evaluate 

 
,264.736.1)1(1)2( =−≈≤−=≥ YPYP  

 
  using the Poisson table in Appendix 3. 
 
 
 
 
 
 
 
 
 
 
 
 


