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Chapter 4: Continuous Variables and Their Probability Distributions 
 

4.1 a. 
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b. The graph is above. 
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4.2 a. p(1) = .2, p(2) = (1/4)4/5 = .2, p(3) = (1/3)(3/4)(4/5) = 2., p(4) = .2, p(5) = .2. 
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c. P(Y < 3) = F(2) = .4, P(Y ≤ 3) = .6, P(Y = 3) = p(3) = .2 
 
d. No, since Y is a discrete random variable. 
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4.3 a. The graph is above. 
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b. It is easily shown that all three properties hold. 
 

4.4 A binomial variable with n = 1 has the Bernoulli distribution. 
 
4.5 For y = 2, 3, …, F(y) – F(y – 1) = P(Y ≤ y) – P(Y ≤ y – 1) = P(Y = y) = p(y).  Also,  

F(1) = P(Y ≤ 1) = P(Y = 1) = p(1). 
 
4.6 a. F(i) = P(Y ≤ i) = 1 – P(Y > i) = 1 – P(1st i trials are failures) = 1 – qi. 
 

b. It is easily shown that all three properties hold. 
 
4.7 a. P(2 ≤ Y < 5) = P(Y ≤ 4) – P(Y ≤ 1) = .967 – .376 = 0.591 

     P(2 < Y < 5) = P(Y ≤ 4) – P(Y ≤ 2) = .967 – .678 = .289.   
     Y is a discrete variable, so they are not equal. 

 
b. P(2 ≤ Y ≤ 5) = P(Y ≤ 5) – P(Y ≤ 1) = .994 – .376 = 0.618 
    P(2 < Y ≤ 5) = P(Y ≤ 5) – P(Y ≤ 2) = .994 – .678 = 0.316.   
    Y is a discrete variable, so they are not equal. 

 
  c. Y is not a continuous random variable, so the earlier result do not hold. 
 
4.8 a. The constant k = 6 is required so the density function integrates to 1. 
 

b. P(.4 ≤ Y ≤ 1) = .648. 
 
c. Same as part b. above. 
 
d. P(Y ≤ .4 | Y ≤ .8) = P(Y ≤ .4)/P(Y ≤ .8) = .352/.896 = 0.393. 
 
e. Same as part d. above. 
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4.9 a. Y is a discrete random variable because F(y) is not a continuous function.  Also, the set 

of possible values of Y represents a countable set. 
 

b. These values are 2, 2.5, 4, 5.5, 6, and 7. 
  

c. p(2) = 1/8, p(2.5) = 3/16 – 1/8 = 1/16, p(4) = 1/2 – 3/16 = 5/16, p(5.5) = 5/8 – 1/2 = 
1/8, p(6) = 11/16 – 5/8 = 1/16, p(7) = 1 – 11/16 = 5/16. 

 
d. P(Y ≤ 5.φ ) = F( 5.φ ) = .5, so 5.φ  = 4. 

 

4.10 a. F( 95.φ ) = ∫
φ

−
95.

0

)1(6 dyyy  = .95, so 95.φ  = 0.865. 

b. Since Y is a continuous random variable, y0 = 95.φ  = 0.865. 
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c. Solid line: f(y); dashed line: F(y) 
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d. P(1 ≤ Y ≤ 2) = F(2) – F(1) = 1 – .25 = .75. 
 
e. Note that P(1 ≤ Y ≤ 2) = 1 – P(0 ≤ Y < 1).  The region (0 ≤ y < 1) forms a triangle (in 
the density graph above) with a base of 1 and a height of .5.  So, P(0 ≤ Y < 1) = 2

1 (1)(.5) 
= .25 and P(1 ≤ Y ≤ 2) = 1 – .25 = .75. 
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4.12 a. F(–∞) = 0, F(∞) = 1, and F(y1) – F(y2) = 

2
1

2
2 yy ee −− −  > 0 provided y1 > y2. 

 
b. 

2
3.1)( 3.

φφ −−= eF = .3, so 3.φ  = )7ln(.−  = 0.5972. 
 
c. 

2

2)()( yyeyFyf −=′=  for y ≥ 0 and 0 elsewhere. 
 

d. P(Y ≥ 200) = 1 – P(Y < 200) = 1 – P(Y ≤ 200) = 1 – F(2) = e–4. 
 
e. P(Y > 100 | Y ≤ 200) = P(100 < Y ≤ 200)/P(Y ≤ 200) = [F(2) – F(1)]/F(2) = 4

41
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4.13 a. For 0 ≤ y ≤ 1, F(y) = 2/2

0
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= y – 1/2.  Hence, 
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 b. P(0 ≤ Y ≤ .5) = F(.5) = 1/8. 
 
 c. P(.5 ≤ Y ≤ 1.2) = F(1.2) – F(.5) = 1.2 – 1/2 – 1/8 = .575. 
 
 
4.14 a. A triangular distribution. 
 

b. For 0 < y < 1, F(y) = 2/2

0

ytdt
y

=∫ .  For 1 ≤ y < 2, F(y) = 12)2( 2
1

1

0

2
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c. P(.8 ≤ Y ≤ 1.2) = F(1.2) – F(.8) = .36. 
 
d. P(Y > 1.5 | Y > 1) = P(Y > 1.5)/P(Y > 1) = .125/.5 = .25. 
 

4.15 a. For b ≥ 0, f (y) ≥ 0.  Also, ] 1//)( 2 =−== ∞
∞∞

∞−
∫∫ b
b

ybybyf . 

b. F(y) = 1 – b/y, for y ≥ b, 0 elsewhere. 
 
c. P(Y > b + c) = 1 – F(b + c) = b/(b + c). 
 
d. Applying part c., P(Y > b + d | Y > b + c) = (b + c)/(b + d). 
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4.16 a. [ ] 122/2)2(
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b. F(y) = y – y2/4, for 0 ≤ y ≤ 2. 
 

c. Solid line: f(y); dashed line: F(y) 
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d. P(1 ≤ Y ≤ 2) = F(2) – F(1) = 1/4. 
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b. F(y) = 2/2/ 23 yy +  for 0 ≤ y ≤ 1. 
 

c. Solid line: f(y); dashed line: F(y) 
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d. F(–1) = 0, F(0) = 0, F(1) = 1. 
 
e. P(Y < .5) = F(.5) = 3/16. 
 
f. P(Y ≥ .5 | Y ≥ .25) = P(Y ≥ .5)/P(Y ≥ .25) = 104/123. 
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c. Solid line: f(y); dashed line: F(y) 
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d. F(–1) = 0, F(0) = .2, F(1) = 1 
 
e. P(Y > .5 | Y > .1) = P(Y > .5)/P(Y > .1) = .55/.774 = .71. 
 
 

4.19 a. Differentiating F(y) with respect to y, we have 
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b. F(3) – F(1) = 7/16 
 
c. 1 – F(1.5) = 13/16 
 
d. 7/16/(9/16) = 7/9. 
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4.20 From Ex. 4.16: 
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So, V(Y) = 2/3 – (2/3)2 = 2/9. 
 

4.21 From Ex. 4.17: 
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So, V(Y) = .55 – (.708)2 = .0487. 
 

4.22 From Ex. 4.18: 
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So, V(Y) = 1.3/3 – (.4)2 = .2733. 
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4.24 222222 )]([)]([2)(})]([)(2{})]({[)( YEYEYEYEYYEYEYEYEYV +−=+−=−=  
= 22 )]([)( YEYE − = σ2. 
 

4.25 Ex. 4.19: 
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So, V(Y) = 47/6 – (31/12)2 = 1.16. 
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  = a2V(Y) = a2σ2. 
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4.27 First note that from Ex. 4.21, E(Y) = .708 and V(Y) = .0487. Then,  

E(W) = E(5 – .5Y) = 5 – .5E(Y) = 5 – .5(.708) = $4.65. 
V(W) = V(5 – .5Y) =.25V(Y) = .25(.0487) = .012. 
 

4.28 a. By using the methods learned in this chapter, c = 105. 

b. ∫ =−=
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4.29 ] 605.5.)(
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=== ∫ ydyyYE .  Thus, 

V(Y) = 3600 3
1  – (60)2 = 3

1 . 
 

4.30 a. ∫ ==
1

0

2 3/22)( dyyYE , ∫ ==
1

0

32 2/12)( dyyYE .  Thus, V(Y) = 1/2 – (2/3)2 = 1/18. 

b. With X = 200Y – 60, E(X) = 200(2/3) – 60 = 220/3, V(X) = 20000/9. 
 
c. Using Tchebysheff’s theorem, a two standard deviation interval about the mean is 
given by 220/3 ± 2 9/20000  or (–20.948, 167.614). 
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=−=−= ∫ yydyyyYE   V(Y) = .64. 

b. E(200Y) = 200(2.4) = $480, V(200Y) = 2002(.64) = 25,600. 
 

c. P(200Y > 600) = P(Y > 3) =  .)4(
4

3

2
64
3 =−∫ dyyy 2616, or about 26% of the time the 

cost will exceed $600 (fairly common). 
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b. Using Tchebysheff’s theorem, a two standard deviation interval about the mean is 
given by 5.5 ± 2 15.  or (4.725, 6.275).  Since Y ≥ 5, the interval is (5, 6.275). 

c. 5781.)7()5.5(
5.5

5

2
8
3 =−=< ∫ dyyYP , or about 58% of the time (quite common). 
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4.35 Let μ = E(Y).  Then, ])[(])[( 22 aYEaYE −μ+μ−=−  

 = 22 )()])([(2])[( aaYEYE −μ+−μμ−−μ−  
 = .)( 22 a−μ+σ  

  
The above quantity is minimized when μ = a. 
 

4.36 This is also valid for discrete random variables –– the properties of expected values used 
in the proof hold for both continuous and discrete random variables. 

 

4.37 ∫ ∫∫
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b. P(a ≤ Y ≤ a + b) = F(a + b) – F(a) = a + b – a = b. 
 

4.39 The distance Y is uniformly distributed on the interval A to B,  If she is closer to A, she 
has landed in the interval (A, 2

BA+ ).  This is one half the total interval length, so the 
probability is .5.  If her distance to A is more than three times her distance to B, she has 
landed in the interval ( 4

3 AB+ , B).  This is one quarter the total interval length, so the 
probability is .25. 

 
4.40 The probability of landing past the midpoint is 1/2 according to the uniform distribution.  

Let X = # parachutists that land past the midpoint of (A, B).  Therefore, X is binomial with 
n = 3 and p = 1/2.  P(X = 1) = 3(1/2)3 = .375. 

 

4.41 First find 
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4.42 The distribution function is 
12

1)(
θ−θ
θ−

=
yyF , for θ1 ≤ y ≤ θ2.  For ,5.)( 5. =φF  then 

5.φ  = θ1 + .5(θ2 – θ1) = .5(θ2 + θ1).  This is also the mean if the distribution. 
 

4.43 Let A = πR2, where R has a uniform distribution on the interval (0, 1).  Then, 

E(A) = πE(R2) = 
3
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2 π
=π∫ drr  
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4.44 a. Y has a uniform distribution (constant density function), so k = 1/4. 

b. 
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4.45 Let Y = low bid (in thousands of dollars) on the next intrastate shipping contract.  Then, Y 

is uniform on the interval (20, 25). 
a. P(Y < 22) = 2/5 = .4 
b. P(Y > 24) = 1/5 = .2. 
 

4.46 Mean of the uniform: (25 + 20)/2 = 22.5. 
 
4.47 The density for Y = delivery time is 4

1)( =yf , 1 ≤ y ≤ 5.  Also, E(Y) = 3, V(Y) = 4/3. 
a. P(Y > 2) = 3/4. 
b. E(C) = E(c0 + c1Y2) = c0 + c1E(Y2) = c0 + c1[V(Y) + (E(Y))2] = c0 + c1[4/3 + 9] 

 
4.48 Let Y = location of the selected point.  Then, Y has a uniform distribution on the interval 

(0, 500). 
a. P(475 ≤ Y ≤ 500) = 1/20 
b. P(0 ≤ Y ≤ 25) = 1/20 
c. P(0 < Y < 250) = 1/2. 

 
4.49 If Y has a uniform distribution on the interval (0, 1), then P(Y > 1/4) = 3/4. 
  
4.50 Let Y = time when the phone call comes in.  Then, Y has a uniform distribution on the 

interval (0, 5).  The probability is P(0 < Y < 1) + P(3 < Y < 4) = .4. 
 
4.51 Let Y = cycle time.  Thus, Y has a uniform distribution on the interval (50, 70).  Then, 
 

P(Y > 65 | Y > 55) = P(Y > 65)/P(Y > 55) = .25/(.75) = 1/3. 
 

4.52 Mean and variance of a uniform distribution: μ = 60, σ2 = (70–50)2/12 = 100/3. 
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4.53 Let Y = time when the defective circuit board was produced.  Then, Y has an approximate 

uniform distribution on the interval (0, 8). 
a. P(0 < Y < 1) = 1/8. 
b. P(7 < Y < 8) = 1/8 
c. P(4 < Y < 5 | Y > 4) = P(4 < Y < 5)/P(Y > 4) = (1/8)/(1/2) = 1/4. 

 
4.54 Let Y = amount of measurement error.  Then, Y is uniform on the interval (–.05, .05). 

a. P(–.01 < Y < .01) = .2 
b. E(Y) = 0, V(Y) = (.05 + .05)2/12 = .00083. 
 

4.55 Let Y = amount of measurement error.  Then, Y is uniform on the interval (–.02, .05). 
a. P(–.01 < Y < .01) = 2/7 
b. E(Y) = (–.02 + .05)/2 = .015, V(Y) = (.05 + .02)2/12 = .00041. 
 

4.56 From Example 4.7, the arrival time Y has a uniform distribution on the interval (0, 30).  
Then, P(25 < Y < 30 | Y > 10) = 1/6/(2/3) = 1/4. 

  
4.57 The volume of a sphere is given by (4/3)πr3 = (1/6)πd3, where r is the radius and d is the 

diameter.  Let D = diameter such that D is uniform distribution on the interval (.01, .05).   
 

Thus, E( 3
6 Dπ ) = ddd∫π

05.

01.
4
13

6  = .0000065π.  By similar logic used in Ex. 4.43, it can be 

found that V( 3
6 Dπ ) = .0003525π2. 

 
4.58 a. P(0 ≤ Z ≤ 1.2) = .5 – .1151 = .3849 

b. P(–.9 ≤ Z ≤ 0) = .5 – .1841 – .3159. 
c. P(.3 ≤ Z ≤ 1.56) = .3821 – .0594 = .3227. 
d. P(–.2 ≤ Z ≤ .2) = 1 – 2(.4207) = .1586. 
e. P(–1.56 ≤ Z ≤ –.2) = .4207 – .0594 = .3613 
f. P(0 ≤ Z ≤ 1.2) = .38493.  The desired probability is for a standard normal. 
 

4.59 a. z0 = 0. 
b. z0 = 1.10 
c. z0 = 1.645 
d. z0 = 2.576 

 
4.60 The parameter σ must be positive, otherwise the density function could obtain a negative 

value (a violation). 
 
4.61 Since the density function is symmetric about the parameter μ, P(Y < μ) = P(Y > μ) = .5.  

Thus, μ is the median of the distribution, regardless of the value of σ. 
 
4.62 a. P(Z2 < 1) = P(–1 < Z < 1) = .6826. 

b. P(Z2 < 3.84146) = P(–1.96 < Z < 1.96) = .95. 
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4.63 a. Note that the value 17 is (17 – 16)/1 = 1 standard deviation above the mean.   

So, P(Z > 1) = .1587. 
b. The same answer is obtained. 

 
4.64 a. Note that the value 450 is (450 – 400)/20 = 2.5 standard deviations above the mean.  

So, P(Z > 2.5) = .0062. 
b. The probability is .00618. 
c. The top scale is for the standard normal and the bottom scale is for a normal 
distribution with mean 400 and standard deviation 20. 
 

4.65 For the standard normal, P(Z > z0) = .1 if z0 = 1.28.  So, y0 = 400 + 1.28(20) = $425.60. 
 
4.66 Let Y = bearing diameter, so Y is normal with μ = 3.0005 and σ = .0010.  Thus, 

Fraction of scrap = P(Y > 3.002) + P(Y < 2.998) = P(Z > 1.5) + P(Z < –2.5) = .0730. 
 

4.67 In order to minimize the scrap fraction, we need the maximum amount in the 
specifications interval.  Since the normal distribution is symmetric, the mean diameter 
should be set to be the midpoint of the interval, or μ = 3.000 in. 

 
4.68 The GPA 3.0 is (3.0 – 2.4)/.8 = .75 standard deviations above the mean.  So, P(Z > .75) = 

.2266. 
 
4.69 The z–score for 1.9 is (1.9 – 2.4)/.8 = –.625.  Thus, P(Z < –.625) = .2660. 
 
4.70 From Ex. 4.68, the proportion of students with a GPA greater than 3.0 is .2266.  Let X = # 

in the sample with a GPA greater than 3.0.  Thus, X is binomial with n = 3 and p = .2266.  
Then, P(X = 3) = (.2266)3 = .0116. 

 
4.71 Let Y = the measured resistance of a randomly selected wire. 

a. P(.12 ≤ Y ≤ .14) = )( 005.
13.14.

005.
13.12. −− ≤≤ ZP  = P(–2 ≤ Z ≤ 2) = .9544. 

b. Let X = # of wires that do not meet specifications.  Then, X is binomial with n = 4 and 
p = .9544.  Thus, P(X = 4) = (.9544)4 = .8297. 

 
 

4.72 Let Y = interest rate forecast, so Y has a normal distribution with μ = .07 and σ = .026. 
a. P(Y > .11) = P(Z > 026.

07.11. − ) = P(Z > 1.54) = .0618. 
b. P(Y < .09) = P(Z > 026.

07.09. − ) = P(Z > .77) = .7794. 
 
 
4.73 Let Y = width of a bolt of fabric, so Y has a normal distribution with μ = 950 mm and σ = 

10 mm. 
a. P(947 ≤ Y ≤ 958) = )( 10

950958
10

950947 −− ≤≤ ZP  = P(–.3 ≤ Z ≤ .8) = .406 
b. It is necessary that P(Y ≤ c) = .8531.  Note that for the standard normal, we find that 

P(Z ≤ z0) = .8531 when z0 = 1.05.  So, c = 950 + (1.05)(10) = 960.5 mm. 
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4.74 Let Y = examination score, so Y has a normal distribution with μ = 78 and σ2 = 36. 

a. P(Y > 72) = P(Z > –1) = .8413. 
b. We seek c such that P(Y > c) = .1.  For the standard normal, P(Z > z0) = .1 when z0 = 

1.28.  So c = 78 + (1.28)(6) = 85.68. 
c. We seek c such that P(Y > c) = .281.  For the standard normal, P(Z > z0) = .281 when 

z0 = .58.  So, c = 78 + (.58)(6) = 81.48. 
d. For the standard normal, P(Z < –.67) = .25.  So, the score that cuts off the lowest 25% 

is given by (–.67)(6) + 78 = 73.98. 
e. Similar answers are obtained. 
f. P(Y > 84 | Y > 72) = P(Y > 84)/P(Y > 72) = P(Z > 1)/P(Z > –1) = .1587/.8413 = .1886. 

 
4.75 Let Y = volume filled, so that Y is normal with mean μ and σ = .3 oz.  They require that 

P(Y > 8) = .01.  For the standard normal, P(Z > z0) = .01 when z0 = 2.33.  Therefore, it 
must hold that 2.33 = (8 – μ)/.3, so μ = 7.301. 

  
4.76 It follows that .95 = P(|Y– μ| < 1) = P(|Z| < 1/σ), so that 1/σ = 1.96 or σ = 1/1.96 = .5102. 
 
4.77 a. Let Y = SAT math score.  Then, P(Y < 550) = P(Z < .7) = 0.758. 
 

b. If we choose the same percentile, 18 + 6(.7) = 22.2 would be comparable on the ACT 
math test. 
 

4.78 Easiest way: maximize the function lnf (y) = 2

2

2
)()2ln(

σ
μ−−πσ− y  to obtain the maximum 

at y = μ and observe that f (μ) = 1/( πσ 2 ). 
 
4.79 The second derivative of f (y) is found to be ( ) [ ]2

222

3
)(2)(

2
1 1)(

σ
−μσμ−−

πσ
−=′′ yyeyf .  Setting 

this equal to 0, we must have that [ ]2

2)(1
σ
−μ− y  = 0 (the other quantities are strictly positive).  

The two solutions are y = μ + σ and μ – σ. 
 
4.80 Observe that A = L*W = |Y|×3|Y| = 3Y2.  Thus, E(A) = 3E(Y2) = 3(σ2 + μ2). 
 

4.81 a. ] .1)1( 0
0

=−==Γ
∞−

∞
−∫ yy edye  

b. [ ] )1()1()1()( 2

0
0

1

0

1 −αΓ−α=−α+−==αΓ −−α
∞

∞−−α
∞

−−α ∫∫ dyeyeydyey yyy . 

 
4.82 From above we have Γ(1) = 1, so that Γ(2) = 1Γ(1) = 1, Γ(3) = 2Γ(2) = 2(1), and 

generally Γ(n) = (n–1)Γ(n–1) = (n–1)!  Γ(4) = 3! = 6 and Γ(7) = 6! = 720. 
 
 
4.83 Applet Exercise –– the results should agree. 
 
 



72                                                                         Chapter 4: Continuous Variables and Their Probability Distributions  
Instructor’s Solutions Manual 
 
4.84 a. The larger the value of α, the more symmetric the density curve. 

b. The location of the distribution centers are increasing with α. 
c. The means of the distributions are increasing with α. 
 

4.85 a. These are all exponential densities. 
b. Yes, they are all skewed densities (decaying exponential). 
c. The spread is increasing with β. 

 
4.86 a. P(Y < 3.5) = .37412 

b. P(W < 1.75) = P(Y/2 < 1.75) = P(Y < 3.5) = .37412. 
c. They are identical. 

 
4.87 a. For the gamma distribution, 05.φ =.70369. 

b. For the χ2 distribution, 05.φ  = .35185. 
c. The .05–quantile for the χ2 distribution is exactly one–half that of the .05–quantile for 
the gamma distribution.  It is due to the relationship stated in Ex. 4.86. 
 

4.88 Let Y have an exponential distribution with β = 2.4. 

a. P(Y > 3) = 4.2/34.2/

3
4.2

1 −−
∞

=∫ edye y = .2865. 

b. ∫ −=≤≤
3

2

4.2/
4.2

1)32( dyeYP y  = .1481. 

 

4.89 a. Note that β−β−
∞

β =∫ /2/

2

1 edye y  = .0821, so β = .8 

 
b. P(Y ≤ 1.7) = 8./7.11 −− e  = .5075 
 
 

4.90 Let Y = magnitude of the earthquake which is exponential with β = 2.4.  Let X = # of 
earthquakes that exceed 5.0 on the Richter scale.  Therefore, X is binomial with n = 10 

and p = P(Y > 5) = 4.2/54.2/

5
4.2

1 −−
∞

=∫ edye y  = .1245.  Finally, the probability of interest is 

P(X ≥ 1) = 1 – P(X = 0) = 1 – (.8755)10 = 1 – .2646 = .7354. 
 
4.91 Let Y = water demand in the early afternoon.  Then, Y is exponential with β = 100 cfs. 

a. P(Y > 200) = 2100/

200
100

1 −−
∞

=∫ edye y  = .1353. 

b. We require the 99th percentile of the distribution of Y:  

P(Y > 99.φ ) = 100/100/
100

1 99.

99.

φ−−
∞

φ

=∫ edye y  = .01.  So, 99.φ  = –100ln(.01) = 460.52 cfs. 
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4.92 The random variable Y has an exponential distribution with β = 10.  The cost C is related 

to Y by the formula C = 100 + 40Y + 3Y2.  Thus, 
 

E(C) = E(100 + 40Y + 3Y2) = 100 + 40(10) + 3E(Y2) = 100 + 400 + 3(100 + 102) = 1100. 
 
To find V(C), note that V(C) = E(C2) – [E(C)]2.  Therefore, 
 
E(C2) = E[(100 + 40Y + 3Y2)2] = 10,000 + 2200E(Y2) + 9E(Y4) + 8000E(Y) + 240E(Y3). 
 
 E(Y) = 10  E(Y2) = 200 

 E(Y3) = dyey y 100/
100

1

0

3 −
∞

∫  = Γ(4)1003 = 6000. 

 E(Y4) = dyey y 100/
100

1

0

4 −
∞

∫  = Γ(5)1004 = 240,000. 

 
Thus, E(C2) = 10,000 + 2200(200) + 9(240,000) + 8000(10) + 240(6000) = 4,130,000. 
 
So, V(C) = 4,130,000 – (1100)2 = 2,920,000. 
 
 

4.93 Let Y = time between fatal airplane accidents.  So, Y is exponential with β = 44 days. 

a. P(Y ≤ 31) = 44/3144/
31

0
44
1 1 −− −=∫ edye y  = .5057. 

b. V(Y) = 442 = 1936. 
 

4.94 Let Y = CO concentration in air samples.  So, Y is exponential with β = 3.6 ppm.   

a. P(Y > 9) = 6.3/96.3/

9
6.3

1 −−
∞

=∫ edye y  = .0821 

b. P(Y > 9) = 5.2/96.3/

9
5.2

1 −−
∞

=∫ edye y  = .0273 

 
4.95 a. For any k = 1, 2, 3, … 
 

P(X = k) = P(k – 1 ≤ Y < k) = P(Y < k) – P(Y ≤ k – 1) = 1 – e–k/β – (1 – e–(k–1)/β) 
           = e–(k–1)/β – e–k/β. 
 

b. P(X = k) = e–(k–1)/β – e–k/β = e–(k–1)/β – e–(k–1)/β(e1/β) = e–(k–1)/β(1 – e1/β) = [e–1/β]k–1(1 – e1/β). 
 

 Thus, X has a geometric distribution with p = 1 – e1/β. 
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4.96 a. The density function f (y) is in the form of a gamma density with α = 4 and β = 2.  

Thus, k = 
96
1

2)4(
1

4 =
Γ

. 

b. Y has a χ2 distribution with ν = 2(4) = 8 degrees of freedom. 
 
c. E(Y) = 4(2) = 8, V(Y) = 4(22) = 16. 
 
d. Note that σ = 16  = 4.  Thus, P(|Y – 8| < 2(4)) = P(0 < Y < 16) = .95762. 

 

4.97 P(Y > 4) = 14/

4
4
1 −−

∞

=∫ edye y  = .3679. 

 
4.98 We require the 95th percentile of the distribution of Y:  

P(Y > 95.φ ) = 4/4/
4
1 95.

95.

φ−−
∞

φ

=∫ edye y  = .05.  So, 95.φ  = –4ln(.05) = 11.98. 

 

4.99 a. P(Y > 1) = 11
1

0
!
1 −−

=

+=∑ − ee
y

y
e  = .7358. 

 
b. The same answer is found. 
 

4.100 a. P(X1 = 0) = 1λ−e  and P(X2 = 0) = 2λ−e .  Since λ2 > λ1, 2λ−e  < 1λ−e . 
 

b. The result follows from Ex. 4.100. 
 
c. Since distribution function is a nondecreasing function, it follows from part b that  

P(X1 ≤ k) = P(Y > λ1) > P(Y > λ2) = P(X2 ≤ k) 
 
d. We say that X2 is “stochastically greater” than X1. 
 
 

4.101 Let Y have a gamma distribution with α = .8, β = 2.4. 
a. E(Y) = (.8)(2.4) = 1.92 
b. P(Y > 3) = .21036 
c. The probability found in Ex. 4.88 (a) is larger.  There is greater variability with the 

exponential distribution. 
d. P(2 ≤ Y ≤ 3) = P(Y > 2) – P(Y > 3) = .33979 – .21036 = .12943. 

 
4.102 Let Y have a gamma distribution with α = 1.5, β = 3. 

a. P(Y > 4) = .44592. 
b. We require the 95th percentile: 95.φ  = 11.72209. 
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4.103 Let R denote the radius of a crater.  Therefore, R is exponential w/ β = 10 and the area is 

A = πR2.  Thus, 
 

E(A) = E(πR2) = πE(R2) = π(100 + 100) = 200π. 
 
V(A) = E(A2) – [E(A)]2 = π2[E(R4) – 2002]  = π2[240,000 – 2002] = 200,000π2, 

where E(R4) = ∫
∞

−

0

10/4
10
1 drer r  = 104Γ(5) = 240.000. 

 
4.104 Y has an exponential distribution with β = 100.  Then, P(Y > 200) = e–200/100 = e–2.  Let the 

random variable X = # of componential that operate in the equipment for more than 200 
hours.  Then, X has a binomial distribution and 

 
P(equipment operates) = P(X ≥ 2) = P(X = 2) + P(X = 3) = 32222 )()1()(3 −−− +− eee  = .05. 
 

4.105 Let the random variable Y = four–week summer rainfall totals 
a. E(Y) = 1.6(2) = 3.2, V(Y) = 1.6(22) = 6.4 
b. P(Y > 4) = .28955. 
 

4.106 Let Y = response time.  If μ = 4 and σ2 = 8, then it is clear that α = 2 and β = 2. 
a. 2/

4
1)( yyeyf −= , y > 0. 

b. P(Y < 5) = 1 – .2873 = .7127. 
 

4.107 a. Using Tchebysheff’s theorem, two standard deviations about the mean is given by 
    4 ± 2 8  = 4 ± 5.657 or (–1.657, 9.657), or simply (0, 9.657) since Y must be positive. 
b. P(Y < 9.657) = 1 – .04662 = 0.95338. 
 

4.108 Let Y = annual income.  Then, Y has a gamma distribution with α = 20 and β = 1000. 
a. E(Y) = 20(1000) = 20,000, V(Y) = 20(1000)2 = 20,000,000. 
b. The standard deviation σ = 000,000,20  = 4472.14.  The value 30,000 is 14.4472

000,20000,30 −  
= 2.236 standard deviations above the mean.  This represents a fairly extreme value. 

c. P(Y > 30,000) = .02187 
 
4.109 Let Y have a gamma distribution with α = 3 and β = 2.  Then, the loss L = 30Y + 2Y2.  

Then,  
  E(L) = E(30Y + 2Y2) = 30E(Y) + 2E(Y2) = 30(6) + 2(12 + 62) = 276, 

  V(L) = E(L2) – [E(L)]2 = E(900Y2 + 120Y3 + 4Y4) – 2762. 
 

  E(Y3) = 2/

0
16

5 yy e−
∞

∫  = 480  E(Y4) = 2/

0
16

6 yy e−
∞

∫  = 5760 

 
 Thus,   V(L) = 900(48) + 120(480) + 4(5760) – 2762 = 47,664. 
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4.110 Y has a gamma distribution with α = 3 and β = .5.  Thus, E(Y) = 1.5 and V(Y) = .75. 
 

4.111 a. )(
)(

1
)(

)(
1/

0

1
)(

1/1

0
)(

1)( αΓ
α+Γββα+Γ

βαΓ
β−

∞
−α+

βαΓ
β−−α

∞

βαΓ
====

α+

ααα ∫∫ aayayaa aa

dyeydyeyyYE . 

 
b. For the gamma function Γ(t), we require t > 0. 
 
c. .)( )(

)(
)(

)1(1 1

αβ=== αΓ
αΓβα

αΓ
α+ΓβYE  

 
d. )(

)5(.5. 5.

)()( αΓ
α+Γβ== YEYE , α > 0. 

 
e. )1(

1
)(

)1(1 1

)()/1( −αβαΓ
α+−Γβ− ===

−

YEYE , α > 1. 

   
)(
)5.(

)(
)5.(5. 5.

)()/1(
αΓβ

−αΓ
αΓ

α+−Γβ− ===
−

YEYE , α > .5. 

   
)2)(1(

1
)2()2)(1(

)2(
)(

)2(22
2

22

)()/1(
−α−αβ−αΓ−α−α

−αΓβ
αΓ

α+−Γβ− −−

=== YEYE , α > 2. 

 
4.112 The chi–square distribution with ν degrees of freedom is the same as a gamma 

distribution with α = ν/2 and β = 2. 
a. From Ex. 4.111, 

)(

)(2

2

2)( ν

ν

Γ

+Γ= aa
a

YE . 

b. As in Ex. 4.111 with α + a > 0 and α = ν/2, it must hold that ν > –2a 
c. 

)(

)(25.

2

2
1

)()( ν

+ν

Γ

Γ== YEYE , ν > 0. 

d. 2
1

)(

)1(21

2

2
1

)()/1( −νΓ

+−Γ− === ν

ν−

YEYE , ν > 2. 

      
)(2

)(5.

2

2
1

)()/1( ν

−ν

Γ

Γ− == YEYE , ν > 1. 

      )4)(2(
1

)2)(1(2
122

22
2)()/1( −ν−ν−−

− === ννYEYE , α > 4. 

 
4.113 Applet exercise. 
 
4.114 a. This is the (standard) uniform distribution. 

b. The beta density with α = 1, β = 1 is symmetric. 
c. The beta density with α = 1, β = 2 is skewed right. 
d. The beta density with α = 2, β = 1 is skewed left. 
e. Yes. 
 

4.115 a. The means of all three distributions are .5. 
b. They are all symmetric. 
c. The spread decreases with larger (and equal) values of α and β. 
d. The standard deviations are .2236, .1900, and .1147 respectively.  The standard 
    deviations are decreasing which agrees with the density plots. 
e. They are always symmetric when α = β. 
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4.116 a. All of the densities are skewed right. 

b. The density obtains a more symmetric appearance. 
c. They are always skewed right when α < β and α > 1 and β > 1. 
 

4.117 a. All of the densities are skewed left. 
b. The density obtains a more symmetric appearance. 
c. They are always skewed right when α > β and α > 1 and β > 1. 
 

4.118 a. All of the densities are skewed right (similar to an exponential shape). 
b. The spread decreases as the value of β gets closer to 12. 
c. The distribution with α = .3 and β = 4 has the highest probability. 
d. The shapes are all similar. 
 

4.119 a. All of the densities are skewed left (a mirror image of those from Ex. 4.118). 
b. The spread decreases as the value of α gets closer to 12. 
c. The distribution with α = 4 and β = .3 has the highest probability. 
d. The shapes are all similar. 
 

4.120 Yes, the mapping explains the mirror image. 
 
4.121 a. These distributions exhibit a “U” shape. 

b. The area beneath the curve is greater closer to “1” than “0”. 
 

4.122 a. P(Y > .1) = .13418 
b. P(Y < .1) = 1 – .13418 = .86582. 
c. Values smaller than .1 have greater probability. 
d. P(Y < .1) = 1 – .45176 = .54824 
e. P(Y > .9) = .21951. 
f. P(0.1 < Y < 0.9) = 1 – .54824 – .21951 = .23225. 
g. Values of Y < .1 have the greatest probability. 
 

4.123 a. The random variable Y follows the beta distribution with α = 4 and β = 3, so the 
constant k = !2!3

!6
)3()4(

)34( =ΓΓ
+Γ  = 60. 

b. We require the 95th percentile of this distribution, so it is found that 95.φ  = 0.84684. 
 

4.124 a. P(Y > .4) = [ ]14.43
1

4.

32 34)1212( yydyyy −=−∫  = .8208. 

b. P(Y > .4) = .82080. 
 

4.125 From Ex. 4.124 and using the formulas for the mean and variance of beta random 
variables, E(Y) = 3/5 and V(Y) = 1/25. 
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4.126 a. ∫ −=−=
y

yydtttyF
0

322 23)66()( , 0 ≤ y ≤ 1.  F(y) = 0 for y < 0 and F(y) = 1 for y > 1. 

b. Solid line: f(y); dashed line: F(y)
0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

y  
 
c. 396.25.75.092.192.1)5(.)8(.)8.5(. =+−−=−=≤≤ FFYP . 
 

4.127 For α = β = 1, 10,1)1()( 1111
)1()1(

)2( ≤≤=−= −−
ΓΓ

Γ yyyyf , which is the uniform distribution. 
 
4.128 The random variable Y = weekly repair cost (in hundreds of dollars) has a beta 

distribution with α = 1 and β = 3.  We require the 90th percentile of this distribution: 

.1.)1()1(3)( 3
9.

1
2

9.

9.

=φ−=−=φ> ∫
φ

dyyYP  

Therefore, 9.φ  = 1 – (.1)1/3 = .5358.  So, the budgeted cost should be $53.58. 
 
 

4.129 E(C) = 10 + 20E(Y) + 4E(Y2) = 10 + 20 ( )3
1  + 4 ( )9

1
4*9

2 +  = 3
52  

V(C) = E(C2) – [E(C)]2 = E[(10 + 20Y + 4Y2)2] – ( )23
52  

 
E[(10 + 20Y + 4Y2)2] = 100 + 400E(Y) + 480E(Y2) + 160E(Y3) + 16E(Y4) 
 
Using mathematical expectation, E(Y3) = 10

1  and E(Y4) = 15
1 .  So, 

 
V(C) = E(C2) – [E(C)]2 = (100 + 400/3 + 480/6 + 160/10 + 16/15) – (52/3)2 = 29.96. 
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4.130 To find the variance σ2 = E(Y2) – μ2: 
 

E(Y2) = )1)((
)1(

)2(
)()2(

)()(
)(1

1

0

1
)()(

)( )1( +β+αβ+α
α+α

β++αΓ
βΓ+αΓ

βΓαΓ
β+αΓ−β+α

βΓαΓ
β+αΓ ==−∫ dyyy  

 
σ2 = ( )

)1()(
2

)1)((
)1(

2 +β+αβ+α
αβ

β+α
α

+β+αβ+α
α+α =− . 

 
4.131 This is the same beta distribution used in Ex. 4.129. 

a. P(Y < .5) = ]5.
0

2
5.

0

2)1(2 yydyy −=−∫  = .75 

b. E(Y) = 1/3, V(Y) = 1/18, so σ = 18/1  = .2357. 
 

4.132 Let Y = proportion of weight contributed by the fine powders 
a. E(Y) = .5, V(Y) = 9/(36*7) = 1/28 
b. E(Y) = .5, V(Y) = 4/(16*5) = 1/20 
c. E(Y) = .5, V(Y) = 1/(4*3) = 1/12 
d. Case (a) will yield the most homogenous blend since the variance is the smallest. 

 
4.133 The random variable Y has a beta distribution with α = 3, β = 5. 

a. The constant 105!4!2
!7

)5()3(
)53( === ΓΓ

+Γc . 
b. E(Y) = 3/8. 
c. V(Y) = 15/(64*9) = 5/192, so σ = .1614. 
d. P(Y > .375 + 2(.1614)) = P(Y > .6978) = .02972. 

 
4.134 a. If α = 4 and β = 7, then we must find 
 

P(Y ≤ .7) = ∑
=

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

10

4

10)3(.)7(.
10

)7(.
i

ii

i
F  = P(4 ≤ X ≤ 10), for the random variable X 

distributed as binomial with n = 10 and p = .7.  Using Table I in Appendix III, this is 
.989. 
 
b. Similarly, F(.6) = P(12 ≤ X ≤ 25), for the random variable X distributed as binomial 
with n = 25 and p = .6.  Using Table I in Appendix III, this is .922. 
 
c. Similar answers are found. 
 

4.135 a. P(Y1 = 0) = (1 – p1)n > P(Y2 = 0) = (1 – p2)n, since p1 < p2. 

b. P(Y1 ≤ k) = 1 – P(Y1 ≥ k + 1) = ∫∑ −+
−

−=−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−−
−

+=

1

0

1

11
1 ),1(

)1(1)1(1
p knk

ini
n

ki knkB
ttpp

i
n

  

         = 1 – P(X ≤ p1) = P(X > p1), where is X beta with parameters k + 1, n – k. 
 
c. From part b, we see the integrands for P(Y1 ≤ k) and P(Y2 ≤ k) are identical but since  
p1 < p2, the regions of integration are different.  So, Y2 is “stochastically greater” than Y1. 
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4.136 a. Observing that the exponential distribution is a special case of the gamma distribution, 

we can use the gamma moment–generating function with α = 1 and β = θ: 

t
tm

θ−
=

1
1)( , t < 1/θ. 

b. The first two moments are found by 2)1(
)(

t
tm

θ−
θ

=′ , E(Y) = θ=′ )0(m . 

3)1(
2)(

t
tm

θ−
θ

=′′ , E(Y2) = 22)0( θ=′′m .  So, V(Y) = 2θ2 – θ2 = θ2. 

 
4.137 The mgf for U is )()()()()( )()( atmeeeEeEeEtm btYatbtbaYttU

U ==== + .  Thus, 
 

)()()( atmaeatmbetm btbt
U ′+=′ .  So, )()0()0( UEabmabmU =μ+=′+=′ . 

 
)()()()()( 22 atmeaatmabeatmabeatmebtm btbtbtbt

U ′′+′+′+=′′ , so 
)()(2)0( 2222 UEYEaabbmU =+μ+=′′ . 

 
Therefore, V(U) = )(2 222 YEaabb +μ+  – 2)( μ+ ab  = 22222 ])([ σ=μ− aYEa . 
 

4.138 a. For U = Y – μ, the mgf )(tmU is given in Example 4.16.  To find the mgf for Y = U + μ, 
use the result in Ex. 4.137 with a = 1, b = – μ: 

 
2/22

)()( tt
U

t
Y etmetm σ+μμ− ==  

 
b. 2/2 22

)()( tt
Y ettm σ+μσ+μ=′ , so μ=′ )0(Ym  

    2/22/22 2222

)()( tttt
Y eettm σ+μσ+μ σ+σ+μ=′′ , so 22)0( σ+μ=′′Ym .  Finally, V(Y) = σ2. 

 
 
4.139 Using Ex. 4.137 with a = –3 and b = 4, it is trivial to see that the mgf for X is 
 

2/9)34(4 22

)3()( ttt
X etmetm σ+μ−=−= . 

 
By the uniqueness of mgfs, X is normal with mean 4 – 3μ and variance 9σ2. 
 
 

4.140 a. Gamma with α = 2, β = 4 
b. Exponential with β = 3.2 
c. Normal with μ = –5, σ2 = 12 
 

4.141 )( 12

12
2

1

12
)()( θ−θ

−
θ

θ
θ−θ

θθ=== ∫ t
eeetY ttty dyeEtm . 
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4.142 a. t

e
Y

ttm 1)( −=  

b. From the cited exercises, at
e

W
attm 1)( −= .  From the uniqueness property of mgfs, W is 

uniform on the interval (0, a). 
c. The mgf for X is at

e
X

attm −
−−= 1)( , which implies that X is uniform on the interval (–a, 0). 

d. The mgf for V is at
ee

at
ebt

V
bttabatetm −− +== )(1)( , which implies that V is uniform on the 

interval (b, b + a). 
 

4.143 The mgf for the gamma distribution is α−β−= )1()( ttm .  Thus, 
1)1()( −α−β−αβ=′ ttm , so )()0( YEm =αβ=′  

 
  22 )1()1()( −α−β−αβ+α=′′ ttm , so )()1()0( 22 YEm =αβ+α=′′ .  So, 
  V(Y) = .)()1( 222 αβ=αβ−αβ+α  
 
4.144 a. The density shown is a normal distribution with μ = 0 and σ2 = 1.  Thus, π= 2/1k . 

b. From Ex. 4.138, the mgf is 2/2

)( tetm = . 
c. E(Y) = 0 and V(Y) = 1. 
 

4.145 a. ] .)( 5
2

0
02/5

5
22/32/3 === ∫

ℵ−
∞−

yyyT edyeeeE  

b. 1,)()(
0

1
1 −>=== ∫

∞−
+ tdyeeeEtm t

ytytY . 

c. By using the methods with mgfs, E(Y) = –1, E(Y2) = 2, so V(Y) = 2 – (–1)2 = 1. 
 

4.146 We require P(|Y– μ| ≤ kσ) ≥ .90 = 1 – 1/k2.  Solving for k, we see that k = 3.1622.  Thus, 
the necessary interval is |Y– 25,000| ≤ (3.1622)(4000) or 12,351 ≤ 37,649. 

 
4.147 We require P(|Y– μ| ≤ .1) ≥ .75 = 1 – 1/k2.  Thus, k = 2.  Using Tchebysheff’s inequality, 

1 = kσ and so σ = 1/2. 
 
4.148 In Exercise 4.16, μ = 2/3 and σ = 9/2  = .4714.  Thus, 
 

P(|Y – μ| ≤ 2σ) = P(|Y – 2/3| ≤ .9428) = P(–.2761 ≤ Y ≤ 1.609) = F(1.609) = .962. 
 

Note that the negative portion of the interval in the probability statement is irrelevant 
since Y is non–negative.  According to Tchsebysheff’s inequality, the probability is at 
least 75%.  The empirical rule states that the probability is approximately 95%.  The 
above probability is closest to the empirical rule, even though the density function is far 
from mound shaped. 
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4.149 For the uniform distribution on (θ1, θ2), μ = 2

21 θ+θ  and σ2 = 12
)( 2

12 θ−θ .  Thus, 
 

2σ = 
3

)( 12 θ−θ . 
The probability of interest is 
 

P(|Y – μ| ≤ 2σ) = P(μ – 2σ ≤ Y ≤ μ + 2σ) = P( 2
21 θ+θ –

3
)( 12 θ−θ ≤ Y ≤ 2

21 θ+θ +
3

)( 12 θ−θ ) 
 
It is not difficult to show that the range in the last probability statement is greater than the 
actual interval that Y is restricted to, so 
 

P( 2
21 θ+θ –

3
)( 12 θ−θ ≤ Y ≤ 2

21 θ+θ +
3

)( 12 θ−θ ) = P(θ1 ≤ Y ≤ θ2) = 1. 
 
Note that Tchebysheff’s theorem is satisfied, but the probability is greater than what is 
given by the empirical rule.  The uniform is not a mound–shaped distribution. 

 
4.150 For the exponential distribution, μ = β and σ2 = β2.  Thus, 2σ = 2β.  The probability of 

interest is 
 

P(|Y – μ| ≤ 2σ) = P(μ – 2σ ≤ Y ≤ μ + 2σ) = P(–β ≤ Y ≤ 3β) = P(0 ≤ Y ≤ 3β) 
 

This is simply F(3β) = 1 – e–3β = .9502.  The empirical rule and Tchebysheff’s theorem 
are both valid. 

 
4.151 From Exercise 4.92, E(C) =  1000 and V(C) = 2,920,000 so that the standard deviation is 

000,920,2  = 1708.80.  The value 2000 is only (2000 – 1100)/1708.8 = .53 standard 
deviations above the mean.  Thus, we would expect C to exceed 2000 fair often. 

 
4.152 We require P(|L– μ| ≤ kσ) ≥ .89 = 1 – 1/k2.  Solving for k, we have k = 3.015.  From Ex. 

4.109, μ = 276 and σ = 218.32.  The interval is  
|L– 276| ≤ 3.015(218.32) or (–382.23, 934.23) 

Since L must be positive, the interval is (0, 934.23) 
 

4.153 From Ex. 4.129, it is shown that E(C) = 3
52  and V(C) = 29.96, so, the standard deviation 

is 96.29 = 5.474.  Thus, using Tchebysheff’s theorem with k = 2, the interval is 
 

|Y – 3
52 | ≤ 2(5.474) or (6.38, 28.28) 

 
4.154 a. μ = 7, σ2 = 2(7) = 14. 

b. Note that σ = 14  = 3.742.  The value 23 is (23 – 7)/3.742 = 4.276 standard 
deviations above the mean, which is unlikely. 
c. With α = 3.5 and β = 2, P(Y > 23) = .00170. 
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4.155 The random variable Y is uniform over the interval (1, 4).  Thus, 3

1)( =yf  for 1 ≤ y ≤ 4 
and 0)( =yf  elsewhere.  The random variable C = cost of the delay is given as 

⎩
⎨
⎧

≤<−+
≤≤

==
42)2(20100
21100

)(
yY
y

YgC  

Thus, dyydydyyfygYgECE ∫∫∫ −++===
∞

∞−

4

2
3
1

2

1
3

100 )]2(20100[)()()]([)(  = $113.33. 

 
4.156 Note that Y is a discrete random variable with probability .2 + .1 = .3 and it is continuous 

with probability 1 – .3 = .7.  Hence, by using Definition 4.15, we can write Y as a mixture 
of two random variables X1 and X2.  The random variable X1 is discrete and can assume 
two values with probabilities P(X1 = 3) = .2/.3 = 2/3 and P(X1 = 6) = .1/.3 = 1/3.  Thus, 
E(X1) = 3(2/3) + 6(1/3) = 4.  The random variable X2 is continuous and follows a gamma 
distribution (as given in the problem) so that E(X2) = 2(2) = 4.  Therefore,  
 

E(Y) = .3(4) + .7(4) = 4. 
 

4.157 a. The distribution function for X is 

⎪
⎪
⎩

⎪⎪
⎨

⎧

≥

<≤−=

<

= −−∫
2001

20001

00

)( 100/

0

100/
100

1

x

xedxe

x

xF x
x

t . 

b. E(X) = )200(1353.
200

0

100/
100

1 +∫ − dxex x  = 86.47, where .1353 = P(Y > 200). 

 
4.158 The distribution for V is gamma with α = 4 and β = 500.  Since there is one discrete point 

at 0 with probability .02, using Definition 4.15 we have that c1 = .02 and c2 = .98.  
Denoting the kinetic energy as K = 2

m V2 we can solve for the expected value: 
 
E(K)= (.98) 2

m E(V2) = (.98) 2
m {V(V) + [E(V)]2} = (.98) 2

m {4(500)2 + 20002} = 2,450,000m. 
 

4.159 a. The distribution function has jumps at two points: y = 0 (of size .1) and y = .5 (of size 
.15).  So, the discrete component of F(y) is given by 

⎪⎩

⎪
⎨

⎧

≥
<≤=

<
= +

5.1
504.

00
)( 15.1.

1.
1

y
y

y
yF  

 
 The continuous component of F(y) can then by determined: 

⎪
⎪
⎩

⎪⎪
⎨

⎧

≥
<≤−
<≤

<

=

11
15.3/)14(
5.03/4

00

)(
2

2

y
yy

yy
y

yF  
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 b. Note that c1 = .1 + .15 = .25.  So, )(75.0)(25.0)( 21 yFyFyF += . 
 

 c. First, observe that 
⎩
⎨
⎧

≥
<≤

=′=
5.3/4

5.03/8
)()( 22 y

yy
yFyf .  Thus,  

533.3/43/8)5)(.6(.25.)(
1

5.

5.

0

2 =++= ∫∫ dyydyyYE .  Similarly, E(Y2) = .3604 so 

that V(Y) = .076. 
 

4.160 a. 1if1)(,0if0)(,11,)(tan)( 2
112

1
)1(

2
2 >=<=≤≤−+== −

π
−

+π∫ yyFyyFyydyyF
y

y
. 

b. Find E(Y) directly using mathematical expectation, or observe that f (y) is symmetric 
about 0 so using the result from Ex. 4.27, E(Y) = 0. 
 

4.161 Here, μ = 70 and σ = 12 with the normal distribution.  We require 9.φ , the 90th percentile 
of the distribution of test times.  Since for the standard normal distribution, P(Z < z0) = .9 
for z0 = 1.28, thus 

9.φ  = 70 + 12(1.28) = 85.36. 
 
4.162 Here, μ = 500 and σ = 50 with the normal distribution.  We require 01.φ , the 1st percentile 

of the distribution of light bulb lives.  For the standard normal distribution, P(Z < z0) = 
.01 for z0 = –2.33, thus 

01.φ  = 500 + 50(–2.33) = 383.5 
 

4.163 Referring to Ex. 4.66, let X = # of defective bearings.  Thus, X is binomial with n = 5 and 
p = P(defective) = .073.  Thus, 

 
P(X > 1) = 1 – P(X = 0) = 1 – (.927)5 = .3155. 

 
4.164 Let Y = lifetime of a drill bit.  Then, Y has a normal distribution with μ = 75 hours and  

σ = 12 hours. 
a. P(Y < 60) = P(Z < –1.25) = .1056 
b. P(Y ≥ 60) = 1 – P(Y < 60) = 1 – .1056 = .8944. 
c. P(Y > 90) = P(Z > 1.25) = .1056 

 
4.165 The density function for Y is in the form of a gamma density with α = 2 and β = .5. 

a. c = 2)5)(.2(
1

Γ
 = 4. 

b. E(Y) = 2(.5) = 1, V(Y) = 2(.5)2 = .5. 
c. 2)5.1(

1)(
t

tm
−

= , t < 2. 
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4.166  In Example 4.16, the mgf is 2/22

)( σ= tetm .  The infinite series expansion of this is  
 

( ) ( ) ( ) ++++=++++= σσσσσσ
4882!3

13
2!2

12
22

664422222222 11)( tttttttm  
 

Then,  μ1 = coefficient of t, so μ1 = 0 
 μ2 = coefficient of t2/2!, so μ2 = σ2 
 μ3 = coefficient of t3/3!, so μ3 = 0 
 μ4 = coefficient of t4/4!, so μ4 = 3σ4 
 

4.167 For the beta distribution, 
 

E(Yk) = )(
)()(

)()(
)(

1

0

11
)()(

)(
1

0

11
)()(

)( )1()1( β+α+Γ
βΓα+Γ

βΓαΓ
β+αΓ−β−α+

βΓαΓ
β+αΓ−β−α

βΓαΓ
β+αΓ =−=− ∫∫ k

kkk dyyydyyyy . 

 
Thus, E(Yk) = )()(

)()(
β+α+ΓαΓ
α+Γβ+αΓ

k
k . 

 
4.168 Let T = length of time until the first arrival.  Thus, the distribution function for T is given 

by 
F(t) = P(T ≤ t) = 1 – P(T > t) = 1 – P[no arrivals in (0, t)] = 1 – P[N = 0 in (0, t)] 

 
 The probability P[N = 0 in (0, t)] is given by !0

)( 0 tet λ−λ  = e–λt.  Thus, F(t) = 1 – e–λt and 
 

f (t) = λe–λt, t > 0. 
 

 This is the exponential distribution with β = 1/λ. 
 
4.169 Let Y = time between the arrival of two call, measured in hours.  To find P(Y > .25), note 

that λt = 10 and t = 1.  So, the density function for Y is given by f (y) = 10e–10y, y > 0.  
Thus, 

P(Y > .25) = e–10(.25) = e–2.5 = .082. 
 

4.170 a. Similar to Ex. 4.168, the second arrival will occur after time t if either one arrival has 
occurred in (0, t) or no arrivals have occurred in (0, t).  Thus:  
P(U > t) = P[one arrival in (0, t)] + P[no arrivals in (0, t)] = !0

)( 0 tet λ−λ  + !1
)( 1 tet λ−λ .  So,  

F(t) = 1 – P(U > t) = 1 – !0
)( 0 tet λ−λ  + !1

)( 1 tet λ−λ  = 1 – tet λ−+λ )1( . 
The density function is given by ttetFtf λ−λ=′= 2)()( , t > 0.  This is a gamma density 
with α = 2 and β = 1/λ. 

 

b. Similar to part a, but let X = time until the kth arrival.  Thus, P(X > t) = ∑
−

=

λ λ−
1

0
!

)(
k

n
n

et tn

.  So, 

F(t) = 1 – ∑
−

=

λ λ−
1

0
!

)(
k

n
n

et tn

. 
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The density function is given by 
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)( 11)()(
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k

n

k

n
n
tt

n
tt nnnnn

eeetFtf .  Or, 

0,)( )!1(
1 >= −

λ λ−− ttf k
et tkk .  This is a gamma density with α = k and β = 1/λ. 

 
4.171 From Ex. 4.169, W = waiting time follow an exponential distribution with β = 1/2.   

a. E(W)  = 1/2, V(W) = 1/4. 
 

b. P(at least one more customer waiting) = 1 – P(no customers waiting in three minutes) 
             = 1 – e–6. 
 

4.172  Twenty seconds is 1/5 a minute.  The random variable Y = time between calls follows an 
exponential distribution with β = .25.  Thus: 

P(Y > 1/5) = ∫
∞

−− =
5/1

5/444 edye y . 

 
4.173 Let R = distance to the nearest neighbor.  Then,  
 

P(R > r) = P(no plants in a circle of radius r) 
 
Since the number of plants in a area of one unit has a Poisson distribution with mean λ, 
the number of plants in a area of πr2 units has a Poisson distribution with mean λπr2.  
Thus, 

F(r) = P(R ≤ r) = 1 – P(R > r) = 1 – .
2re λπ−  

 
So, 

2

2)()( rretFrf λπ−λπ=′= , r > 0. 

  
4.174 Let Y = interview time (in hours).  The second applicant will have to wait only if the time 

to interview the first applicant exceeds 15 minutes, or .25 hour.  So, 

P(Y > .25) = .61.2 5.

25.

2 == −
∞

−∫ edye y  

 
4.175 From Ex. 4.11, the median value will satisfy 5.2/)( 2 == yyF .  Thus, the median is 

given by 414.12 = . 
 
4.176 The distribution function for the exponential distribution with mean β is .1)( /β−−= yeyF   

Thus, we require the value y such that 5.1)( / =−= β− yeyF .  Solving for y, this is βln(2). 
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4.177 a. 2.07944 = 3ln(2) 

b. 3.35669 < 4, the mean of the gamma distribution. 
c. 46.70909 < 50, the mean of the gamma distribution. 
d. In all cases the median is less than the mean, indicating right skewed distributions. 
 

4.178 The graph of this beta density is above. 
0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

y

f(y
)

 
 

a. Using the relationship with binomial probabilities,  
P(.1 ≤ Y ≤ .2) = 4(.2)3(.8) + (.2)4 – 4(.1)3(.9) – (.1)4 = .0235. 

b. P(.1 ≤ Y ≤ .2) = .9963 – .9728 = .0235, which is the same answer as above. 
c. 05.φ  = .24860, 95.φ  = .90239. 
d. P( 05.φ  ≤ Y ≤ 95.φ ) = .9. 
 

4.179 Let X represent the grocer’s profit.  In general, her profit (in cents) on a order of 100k 
pounds of food will be X = 1000Y – 600k as long as Y < k.  But, when Y ≥ k the grocer’s 
profit will be X = 1000k – 600k = 400k.  Define the random variable Y′ as 

⎩
⎨
⎧

≥
<≤

=′
kYk

kYY
Y

0
 

Then, we can write g(Y′) = X = 1000Y′ + 600k.  The random variable Y′ has a mixed 
distribution with one discrete point at k.  Therefore, 

3
1

2
1 13)()( kdyykYPkYPc

k

−==≥==′= ∫ , so that c2 = k3. 

Thus, 
⎩
⎨
⎧

≥
<≤

=
ky

ky
yF

1
00

)(2  and 3

3

3
0

23

21 )0|()(
k
y

k

dtt
y

kYyYPyF =
∫

=<′≤≤= , 0 ≤ y < k. 

Thus, from Definition 4.15,  

∫ −+−=+=′=
k

k
y dykykkkYgEcYgEcYgEXE

0

333
2211 3

2

)6001000(400)1()]([)]([)]([)( , 

or E(X) = 400k – 250k2.  This is maximized at k = (.4)1/3 = .7368. (2nd derivative is –.) 
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4.180 a. Using the result of Ex. 4.99, P(Y ≤ 4) = 1 – .7619.
2

0
!

4 4 =∑
=

−

y
y
ey  

b. A similar result is found. 
  

4.181 The mgf for Z is 2/)( 2

)/()()()( t
Y

ttZt
Z etmeeEeEtm

y

=σ=== σ
μ

σ
μ− − , which is a mgf for a 

normal distribution with μ = 0 and σ = 1. 
 
4.182 a. P(Y ≤ 4) = P(X ≤ ln4) = P[Z ≤ (ln4 – 4)/1] = P(Z ≤ –2.61) = .0045. 

b. P(Y > 8) = P(X > ln8) = P[Z > (ln8 – 4)/1] = P(Z > –1.92) = .9726. 
 

4.183 a. E(Y) = 112/163 ee =+  (598.74 g), V(Y) = 22 16 4( 1)10e e −− . 
b. With k = 2, the interval is given by E(Y) ± 2 )(YV  or 598.74 ± 3,569,038.7.  Since the 
weights must be positive, the final interval is (0, 3,570,236.1) 
c. P(Y < 598.74) = P(lnY < 6.3948) = P[Z < (6.3948 – 3)/4] = P(Z < .8487) = .8020 
 

4.184 The mgf forY is ∫∫∫∫
∞

−−

∞

+
∞

−

∞

+=+==
0

)1(
2
1

0
)1(

2
1

0
2
1

0

2
1)()( dyedyedyeedyeeeEtm tyytytyytytY

Y .  

This simplifies to 21
1)(
tY tm

−
= .  Using this, E(Y) = 0)1(

2
0 2)( =−= =′ tt

t
ttm = 0. 

 

4.185 a. 1)1()()1()()( 21 =−+=−+= ∫∫∫
∞

∞−

∞

∞−

∞

∞−

aadyyfadyyfadyyf . 

 

b. i. 2121 )1()()1()()()( μ−+μ=−+== ∫∫∫
∞

∞−

∞
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∞−

aadyyyfadyyyfadyyyfYE  
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2
12

2
1

2
2 σ+μ−+σ+μ=−+= ∫∫

∞

∞−

∞

∞−

aadyyfyadyyfyaYE .  So, 

V(Y) = E(Y2) – [E(Y)]2 = 2
21

2
2

2
2

2
1

2
1 ])1([))(1()( μ−+μ−σ+μ−+σ+μ aaaa , which 

simplifies to 2
21

2
2

2
1 ])[1()1( μ−μ−+σ−+σ aaaa  

 

4.186 For m = 2, dyeyyYE y α−
∞

∫ α
= /

0

22)( .  Let u = y2/α.  Then, du
u

dy
2
α

= .  Then, 

2
)2/1()2/3(2)(

0

2/1/

0

2
2 Γα

=Γα=α=
α

= ∫∫
∞

−α−
∞

dueudyeyYE uy .  Using similar methods, 

it can be shown that α=)( 2YE  so that ⎥⎦
⎤

⎢⎣
⎡ π
−α=⎥

⎦

⎤
⎢
⎣

⎡ Γα
−α=

4
1

2
)2/1()(

2

YV , since it will 

be shown in Ex. 4.196 that Γ(1/2) = π . 
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4.187 The density for Y = the life length of a resistor (in thousands of hours) is 

.0,)( 10
2 10/2

>=
−

yyf
yye  

a. P(Y > 5) = ] 5.2
5

10/

5
10

2 210/2
−∞−

∞

=−=∫
−

eedy yye y

 = .082. 

b. Let X = # of resistors that burn out prior to 5000 hours.  Thus, X is a binomial random 
variable with n = 3 and p = .082.  Then, P(X = 1) = 3(1 – .082)(.082)2 = .0186. 

 
4.188 a. This is the exponential distribution with β = α. 

b. Using the substitution u = ym/α  in the integrals below, we find: 

)/11()( /1

0

/1/1/

0

mdueudyeyYE mummymm m

+Γα=α== ∫∫
∞

−α−
∞

α  

)/21()( /1

0

/2/2/1

0

2 mdueudyeyYE mummymm m

+Γα=α== ∫∫
∞

−α−+
∞

α .   

Thus,  
)]/11()/21([)( 2/2 mmYV m +Γ++Γα= . 

 
4.189 Since this density is symmetric about 0, so using the result from Ex. 4.27, E(Y) = 0.  

Also, it is clear that V(Y) = E(Y2).  Thus, 

1
1

)2/)2(,2/1(
)2/)2(,2/3()1(

)2/)2(,2/1(
1)( 2/)4(22

1

1

2

−
=

−
−

=−
−

= −

−
∫ nnB

nBdyyy
nB

YE n  = V(Y).  This 

equality follows after making the substitution u = y2. 
 

4.190 a. For the exponential distribution, β−
β= /1)( tetf  and β−−= /1)( tetF . Thus, r(t) = 1/β. 

b. For the Weibull, α−
α

−

= /1

)(
mm ymy eyf and α−−= /1)(

myeyF .  Thus, α

−

=
1

)(
mmytr , which is 

an increasing function of t when m > 1. 
 

4.191 a. G(y) = 
)(1

)()(
)(

)()|(
cF

cFyF
cYP

yYcPcYyYP
−
−

=
≥
≤≤

=≥≤ . 

b. Refer to the properties of distribution functions; namely, show G(–∞) = 0, G(∞) = 1, 
and for constants a and b such that a ≤ b, G(a)  ≤ G(b). 
 
c. It is given that 3/2

1)( yeyF −−= .  Thus, by using the result in part b above, 

P(Y ≤ 4 | Y ≥ 2) = 4
2/2

2/23/4

11(1
2

22

−

−

−−

−=
−−− e

e
ee . 

 

4.192 a. ( ) dvevVE KTmv
KT
m )2/(

0

32/3
2

2

4)( −
∞

π ∫π= .  To evaluate this integral, let u = ( )KT
mv 2

2  so that 

dudv
um

KT
2

12=  to obtain ππ

∞
−

π =Γ== ∫ m
KT

m
KTu

m
KT duueVE 22

0

2 2)2(22)( . 
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b. ( ) dvevmVmEmVE KTmv
KT
m )2/(

0

42/3
2

2
2
12

2
1 2

2)()( −
∞

π ∫π== .  Here, let u = ( )KT
mv 2

2  so that 

dudv
um

KT
2

12=  to obtain KTmVE KT
2
3

2
522

2
1 )()( =Γ=

π
 (here, we again used the result 

from Ex. 4.196 where it is shown that Γ(1/2) = π ). 
 
 

4.193 For 100/
100

1)( yeyf −= , we have that 100/1)( yeyF −−= .  Thus, 

150)50|(
50

100
1

100/

2/1 ==≥ ∫
∞

−

− dyYYE
yye

e
. 

Note that this value is 50 + 100, where 100 is the (unconditional) mean of Y.  This 
illustrates the memoryless property of the exponential distribution. 
 
 

4.194 ∫ ∫∫∫
∞

∞−

∞

∞−

+−
π

∞

∞−

−
π

∞

∞−

−
π

=⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
dxdyedxedye yxuuxuy )()2/1(

2
1)2/1(

2
1)2/1(

2
1 2222

.  By changing to polar 

coordinates, x2 + y2 = r2 and dxdy = rdrdθ.  Thus, the desired integral becomes 

∫ ∫
π ∞

−
π =θ

2

0

1

0

)2/1(
2
1 2

u
ur drdre . 

Note that the result proves that the standard normal density integrates to 1 with u = 1. 
 
 

4.195 a. First note that W = (Z2 + 3Z)2 = Z4 + 6Z3 + 9Z2.  The odd moments of the standard 
normal are equal to 0, and E(Z2) = V(Z) + [E(Z)]2 = 1 + 0 = 1.  Also, using the result in 
Ex. 4.199, E(Z4) = 3 so that E(W) = 3 + 9(1) = 12. 

 
b. Applying Ex. 4.198 and the result in part a: 

9.1)( )( =−≥≤ w
WEwWP , 

so that w = 120. 
 

4.196 [ ] π=π=π===Γ ∫∫ ∫
∞

−
π

−
∞ ∞

−−
2
1

0

)2/1(
2
1)2/1(

0 0

2/1 2222)2/1(
22

dxedxedyey xxy  (relating 

the last integral to that P(Z > 0), where Z is a standard normal random variable). 
 
 
4.197 a. Let y = sin2θ, so that dy = 2sinθcosθdθ.  Thus, 

∫∫∫
π

−β−α
π

−β−α−β−α θθ=θθ−θ=−=βα
2/

0

1212
2/

0

1222
1

0

11 cossin2)sin1(sin2)1(),( dddyyyB , using 

the trig identity θ=θ− 22 cossin1 . 
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b. Following the text, ∫ ∫∫∫
∞ ∞

−−−β−α
∞

−−β
∞

−−α ==βΓαΓ
0 0

11

0

1

0

1)()( dydzezydzezdyey zyzy .  Now, 

use the transformation θ=θ= 2222 sin,cos rxry  so that θθ= sincos4 3rdydz .  
Following this and using the result in part a, we find 

∫
∞

−−β+αβα=βΓαΓ
0

)1(2 2),()()(
2

rdrerB r . 

A final transformation with x = r2 gives )(),()()( β+αΓβα=βΓαΓ B , proving the result. 
 
 

4.198 Note that  

)|)((|)()(|)(|)(|)(||])([|
|)(||)(|

kYgkPdyykfdyyfygdyyfygYgE
kygkyg

>=>≥= ∫∫ ∫
∞

>

∞

∞−

∞

>

, 

Since kyg >|)(| for this integral. Therefore, 
 

kYgEkYgP /|))((|1)|)((| −≥≤ . 
 

4.199 a. Define 2/12 2

)( yi eyyg −−=  for positive integer values of i.  Observe that )()( ygyg −=−  
so that g(y) is an odd function.  The expected value E(Z2i–1) can be written 

as ∫
∞

∞−
π

− = dyygZE i )()(
2
112  which is thus equal to 0. 

 
b. Now, define 2/2 2

)( yieyyh −=  for positive integer values of i.  Observe that 
)()( yhyh =−  so that h(y) is an even function.  The expected value E(Z2i) can be written 

as ∫∫
∞

π

∞

∞−
π

==
0

2
2

2
12 )()()( dyyhdyyhZE i .  Therefore, the integral becomes 

)2/1(22)( 1

0

2/11

0

2/2
2
22 2

+Γ===
π

∞
−−

π

∞
−

π ∫∫ idwewdyeyZE iwiiyii . 

In the last integral, we applied the transformation w = z2/2. 
 
c.  1)2/1(2)2/11(2)( 11112 =π=+Γ=

ππ
ZE  

 3)2/1)(2/3(2)2/12(2)( 21214 =π=+Γ=
ππ

ZE  

 15)2/1)(2/3)(2/5(2)2/13(2)( 31316 =π=+Γ=
ππ

ZE  

 105)2/1)(2/3)(2/5)(2/7(2)2/14(2)( 41418 =π=+Γ=
ππ

ZE . 
 
d. The result follows from: 

( ) )()2/1(2)2/1(2)2/1(2)12( 21 ii
i

ij

i
i

ij

i

ij

ZEijjj =+Γ=−=−=−
π

===
∏∏∏ . 
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4.200 a. )()(
)()(

)(
)()(

)()(
)(

1

0

11
)()(

)( )1()( β+α+ΓαΓ
α+Γβ+αΓ

β+α+Γ
βΓα+Γ

βΓαΓ
β+αΓ−β−α+

βΓαΓ
β+αΓ ==−= ∫ a

a
a

aaa dyyyYE . 

b. The value α + a must be positive in the beta density. 
 
c. With a = 1, β+α

α
β+α+ΓαΓ
α+Γβ+αΓ == )1()(

)1()(1 )(YE . 
 
d. With a = 1/2, )2/1()(

)2/1()(2/1 )( β+α+ΓαΓ
α+Γβ+αΓ=YE . 

 
e.  With a = –1, 1

1
)1()(
)1()(1 )( −α

−β+α
−β+αΓαΓ
−αΓβ+αΓ− ==YE , α > 1 

With a = –1/2, )2/1()(
)2/1()(2/1 )( −β+αΓαΓ

−αΓβ+αΓ− =YE , α > 1/2 

With a = –2, )2)(1(
)2)(1(

)2()(
)2()(2 )( −α−α

−β+α−β+α
−β+αΓαΓ
−αΓβ+αΓ− ==YE , α > 2. 


