Chapter 6: Functions of Random Variables

6.1

6.2

6.3

6.4

y
The distribution function of Y is F, (y) = J.?_(l ~t)dt=2y-y*,0<y<l.
0

a. R, ()=PU, <u)=PQY -1<u)=P(Y <41 = (4 = 2(4) — (41)’. Thus,
fo,(W=F (W=4", -1<u<l.

b. R (u)=PU,<u)=P(1-2Y <u)=P(Y < = F (B =1-2(%) = (41) . Thus,
fo,(W)=F, (W=4",-1<u<l.

c. F,(u)=PU,<u)=P(Y><u)=P(Y <Ju)=F,(Ju)=2Ju-u Thus,
fus(u)zFU’_;(u)zﬁ—l,OSUSI.

d EU,)=-1/3,EU,)=1/3, EU,)=1/6.

e. EQY-1)=-1/3,E(1-2Y)=1/3, E(Y?)=1/6.

y
The distribution function of Y is F, (y) = I(3 [2)tdt =(1/2)(y’ -1),-1<y<1.
-1

a. F, (U=PU, <u)=P@3Y <u)=P(Y <u/3)=F, (u/3)=1(u*/18-1). Thus,
f,, (U)=Fj (uy=u’/18, -3<u<3.

b. F, (W)=PU, <u)=P@3-Y <u)=P(Y 23-u)=1-F,(3-u)=1[1-(3-u)’].
Thus, f, (U)=F; (U=3(3-u)’,2<u<4.

c. Ry (uW=PU,<u)=P(Y><u)=P(-Ju <Y <su)=F Hu)-F (—u)=u".
Thus, f, (u)=F; (U)=3vu,0<u<l.

y’/2  0<y<l1
The distribution function for Yis F, (y)=<y—-1/2 1<y<1.5.

1 y>1.5
a. F,(u)=PU su)=P(10Y -4<u)=P(Y <& =F, (). So,
- —4<u<é6 u _4<u<6
FRu=< 4% 6<u<ll,and fy(u)=FRjUu)=<4& 6<u<ll.
1 ux>1l1 0 elsewhere

b. E(U)=5.583.
c. E(10Y —4)=10(23/24) - 4 = 5.583.

The distribution function of Yis F,(y)=1-e**, 0<y.

a. F,(W=PU<u)=PQ3Y +1<u)=P(Y <&)=F (&) =1-e"“"" Thus,
fLuy=Fu=Le"“""? ux>1.

b. E(U)=13.
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6.5

6.6

6.7

6.8

6.9

The distribution function of Yis F,(y)=Yy/4,1<y<5.
F,(u)=PU <u)=PQ2Y*+3<u)=P(Y </%)=F, (%) =1,/% . Differentiating,
fu(u)=Fu)=%(52)"?, 5<u<53.

Refer to Ex. 5.10 ad 5.78. Define F, (u)=P(U <u)=P(Y, =Y, <u)=P(Y, <Y, +U).
a. Foru<O0, F,(u)=PU <u)=P(Y, =Y, <u)=0.
u Y,+u
For0<u<1, Ry(u)=PU <u)=P(Y,-Y, <u)=[ [idydy, =u’/2.
0 2y,
2-u 2
For 1<us<2, F(u)=PU <u)=P(Y,-Y,<u)=1- [ [ldy,dy,=1-(2-u)’/2.
0 y,+u
u 0<ux<l
Thus, f,(U)=F/(U)=42-u 1<y<2.
0 elsewhere
b. EU)=1.

Let Fz(z) and fz(z) denote the standard normal distribution and density functions
respectively.

a. F,(uW)=PU <u)=P(Z?><u)=P(—u<Z <Ju)=F,(u)-F,(-Ju). The
density function for U is then

fy (W) = R () =51 F, (V) + 5= f, (V) =+ f,(Wu), u=0.

Evaluating, we find f, (U) =15 u'?e* u>0.

b. U has a gamma distribution with a = 1/2 and B = 2 (recall that ['(1/2) = Jn ).
c. This is the chi—square distribution with one degree of freedom.

Let Fy(y) and fy(y) denote the beta distribution and density functions respectively.
a. R W=PU<u=P1-Y<u)=P(Y 21-u)=1-F,(1-u). The density function

for Uis then f,(u)=Fj(u)=f,(1-u)=rSm5u’ ' (1-uw*', 0<u<l.
b. E(U)=1-E(Y)= 1.
c. V(U)=V(Y).

Note that this is the same density from Ex. 5.12: f(y,,y,)=2,0<y;<1,0<y, <1,
0<y;+y, <1

u-y,;

a F,(u)=PU <u)=P(Y,+Y, <u)=P(Y, <u-Y,)=[ [2dydy, =u’. Thus,
0 0

fo(u)=F/(u)=2u,0<u<l.
b. E(U)=2/3.

C. (found in an earlier exercise in Chapter 5) E(Y; +Y,) = 2/3.
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6.10 Referto Ex. 5.15 and Ex. 5.108.

o U+y,
a. Fy(w=PU<<u)=P(,-Y, <u)=P(Y, <u+Y,) :'[ Ie‘yl dy,dy, =1-e™, so that
0 vy
fo(u)y=F/(u)y=e™,u>0, so that U has an exponential distribution with f = 1.
b. From part a above, E(U) = 1.

6.11 Itis given that fi(yi))= e ,yi>0fori=1,2. LetU=(Y; +Y>2)/2.
2u 2u-y,
a Fy(u)=PU<u)=PCy=<u)=P(Y, <2u-Y,)= [ [e dydy,=1-e -2ue™,
0 v
so that f,(u)=F/(u)=4ue™,u>0,a gamma density with a =2 and p = 1/2.
b. From part (a), E(U)= 1, V(U) = 1/2.

6.12 Let Fy(y) and fy(y) denote the gamma distribution and density functions respectively.
a. F,(u=PU <u)=P(cY <u)=P(Y <u/c). The density function for U is then

fu=FRW=1fU/c)=r5 u“'e™® u>0. Note that this is another

gamma distribution.
b. The shape parameter is the same (o), but the scale parameter is Cp.

6.13 Referto Ex. 5.8;

uu-y,

F,(u)=PU <u)=P(Y, +Y, <u)=P(Y, <u-Y,) =j je*yfyzdyldy2 =l-e“—ue™.
0 0
Thus, f,(u)=Fj(u)y=ue™,u>0.

6.14 Since Y; and Y, are independent, so f(y,,y,) =18(y, = y;)ys,for 0<y; <1,0<y,<1.
Let U=Y,Y,. Then,

1 1
Fy(u)=PU <u)=P(YY, <u)=P(Y, <u/Y,) = P(Y, >u/Y,)=1- [ [18(y, - y})yidy,dy,
u ul’y,
=9u” - 8u’ + 6u’lnu.
f,(W)=FUu)=18u(l-u+ulnu),0<u<l.

6.15 Let U have a uniform distribution on (0, 1). The distribution function for U is
F,(uy=PU <u)=u,0<u<1. Fora function G, we require G(U) =Y where Y has

distribution function Fy(y)=1—e™*",y>0. Note that
Fu(y) =P(Y<y)= P(GU)<y)=PU <G (N]=RI[G(Y]=u.

So it must be true that G™'(y)=1— e’ = u so that G(u) = [-In(1— u)] "% Therefore, the
random variable Y = [-In(U — 1)]71/ ? has distribution function Fy(y).
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6.16

6.17

6.18

6.19

6.20

6.21

6.22

6.23

y
Similar to Ex. 6.15. The distribution function for Y is F, (y) = bjt‘zdt =1 —%, y>Dh.
b

Fuy) =P(Y<y)= P(GU)<y)=PU <G (N]=RI[G(y]=u.
So it must be true that G™'(y)=1- 2 =u so that G(u) = 2 . Therefore, the random
variable Y = b/(1 — U) has distribution function Fy(y).

a. Taking the derivative of F(y), f(y)= “ﬁ:l ,0<y<86.

b. Following Ex. 6.15 and 6.16, let u = (%)q so that y = 0u"®. Thus, the random variable
Y = 0U"® has distribution function Fy(y).

c. From part (b), the transformation is y = 4\/U . The values are 2.0785, 3.229, 1.5036,
1.5610, 2.403.

a. Taking the derivative of the distribution function yields f(y)=ap*y ™", y>p.

b. Following Ex. 6.15, let u =1~ (5)* so that y = £ Thus, Y =p(1-U)""*.

c. From part (b), y =3/+1—u. The values are 3.0087, 3.3642, 6.2446, 3.4583, 4.7904.

The distribution function for X is:
Fx(X) = P(X <X) = P(I/Y <X) = P(Y > 1/x) = 1 — Fy(1/%)
=1 - [1-(Bx)* |= (Bx)*, 0 <x < B, which is a power distribution with 6 = "

a. F, (W)= PW <w)+P(Y><w)=P(Y <J/w)=F, (w)=+w, 0<w<1.
b. F, (W)=PW <w)+PGHY <w)=PY <w?)=F, W) =w?,0<w<1.

By definition, P(X=1)=P[F(i— 1) <U<F(i)]=F@{)-F@—-1),fori=1, 2, ..., since for
any0<a<Il,P(U<a)=aforany 0 <a<1. FromEx. 4.5, P(Y=1)=F(i) — F(i — 1), for
i=1,2,.... Thus, X and Y have the same distribution.

Let U have a uniform distribution on the interval (0, 1). For a geometric distribution with
parameter p and distribution function F, define the random Variable X as:

X=KkK 1fand only if F(k—1) <U < F(k), k=
Or since F(K) = 1 — g, we have that:

X= klfandonlylfl—q '<U<1-¢", OR

X =k if and only if g, < 1-U < ¢*!, OR

X =k if and only if kinq < In(1-U) < (k-1)Ing, OR

X =k if and only if k—1 < [In(1-U)]/Inq < k.

a.lfU=2Y—-1,then Y=Y, Thus, L =1 and f,(u)=12(1-¥)=1 [ <u<l.
b.IfU=1-2Y,thenY =52, Thus, £ =1 and f,(u)=12(1-54) =1 —1<u<l.
c.IfU=Y* thenY= U . Thus, & =1 and f,(u)=;=2(1-Ju)=L o<u<1.
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6.24 IfU=3Y+1,thenY =% Thus, & =1. With f,(y)=1e"*, we have that
f,(u) :%[%e—(u—l)/lz]: %e—(u—l)/lz’ 1<u.

6.25 Referto Ex. 6.11. The variable of interest is U = % Fix Y,=Y,. Then, Y, =2u-Y,

—2U

and dy‘ = 2. The joint density of U and Y, is g(u, y») =2e ", u>0, Yy, >0, and y, < 2u.

2u
Thus, f, (u)= [2edy, = 4ue™ foru=0.
0

6.26  a. Using the transformation approach, Y = U"™ so that & = Ly~™'™ g that the density

-u/a

function for Uis f,(u)==1e ™, u>0. Note that this is the exponential distribution

with mean a.

o

b. E(Y*)=EUY™) = J.uk/m Le™edu = F(ﬁ + l)cxk/m , using the result from Ex. 4.111.
0
6.27 a.Let W=+/Y . The random variable Y is exponential so f, (y) = %e’y/ P, Then, Y =W
and & =2w. Then, f,(y)=2we™"", w>0, which is Weibull with m =2,
b. It follows from Ex. 6.26 that E(Y¥?) = (% +1)3*2

6.28 IfY is uniform on the interval (0, 1), f,(u)=1. Then, Y =e™¥/*> and &£ =—-1e™"",
Then, f,(y)=1]|-1e™"? |=1e™?, u >0 which is exponential with mean 2.

6.29 a With W =1V = /2 and | & |=—L_ Then,

f (W) _ a(2w/m) e—zbw/m _ a2 Wl/ze—w/kT W > 0.

J2mw m3/2

The above expression is in the form of a gamma density, so the constant a must be

chosen so that the density integrate to 1, or simply
av2 _ 1

3/2 3 3/2 ¢
m T(3)(kT)

So, the density function for W is
fu (W) =

1/2 o—W/KT
ré >(kT>”2 wre

b. For a gamma random variable, E(W) = 3 kT .

6.30 The density function for I is f,(i)=1/2,9<i<11. ForP = 21, 1=+/P/2 and

%:(1/2)3/2 p™2. Then, f,(p) =7 INTE 162 <p<242.
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6.31 Similar to Ex. 6.25. Fix Y; =Y;. Then, U =Y,/y,, Y, =Yy,;U and | 2|=y,. The joint

(1+u)/2

density of Yiand Uis f (y,,u) = +yle " ,¥Y1>0,u>0. So, the marginal

o0

density for Uis f,(u) = J.é yre (W2 dy =2 y>0.

a+uy* > 7 —
0

632 Nowf(y)=1/4, 1 <y<5. IfU=2Y>+3, then Y = (42)"? and | &= +(5Z). Thus,
fy(u)= 5<u<53.

82( 82u23)° " =

633 IfU=5-(Y/2),Y=2(5-U). Thus, |%|=2 and f,(u)=4(80-31u+3u’),45<u<5.

6.34 aIfU=Y’Y=U. Thus, | |=7- and f,(u)=+4e™"*, u>0. This s the

exponential density with mean 6.

b. From part a, E(Y) = E(U"%) = 422 Also, E(Y?) = E(U) = 6, so V(Y) = 0[1 - Z].

6.35 By independence, f(y,,y,)=1,0<y;<0,0<y,<1. LetU=Y,Y,. For a fixed value

of Y aty,, then y, = u/y;. So that %2 = yll So, the joint density of Y, and U is

g(y,u)=1/y,,0<y;<0,0<u<y;.

1
Thus, f, (u):j(l/ y,)dy, =—In(u),0<u<1.

6.36 By independence, f(y,,y,)= “fa—'zyze_“’lz*yg) ,Y1>0,y,>0. Let U= Y +Y,”. For a fixed

value of Y; at y;, then U = y; +Y,’ so we can write Y, =+/u—Yy; . Then, 2= —— 5o
u-yj

that the joint density of Y; and U is
g(yl,u)— 4ylme—u/e . _922 y,e -u/0 f0r0<y1< \/_

2

m
Then, f,(u)= J.e% y,e™°dy, = e%ue_“/ ®. Thus, U has a gamma distribution with o = 2.

0

6.37 The mass function for the Bernoulli distribution is p(y)= p’(1-p)"~Y,y=0, 1.

1
a. m (H)=E(e")=>e"p(y)=1-p+pe'.

b. m, ®=EE")=]]m, ®)=[1-p+pe']

c. Since the mgf for W is in the form of a binomial mgf with n trials and success
probability p, this is the distribution for W.
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Let Y, and Y, have mgfs as given, and let U =a,;Y; + a,Y,. The mdf for U is
m, (t) = E(e™) = E(e™""™=™") = E(e™"™)E(e™™) = m, (a,t)m, (a,1).

The mgf for the exponential distribution with p=11is m(t)=(1—t)™", t< 1. Thus, with
Y, and Y, each having this distribution and U = (Y + Y,)/2. Using the result from Ex.
6.38, let a; = a, = 1/2 so the mgf for U is m, (t) = m(t/2)m(t/2) = (1-t/2). Note that
this is the mgf for a gamma random variable with a = 2, § = 1/2, so the density function
forUis f,(u)=4ue™,u>0.

It has been shown that the distribution of both Y,> and Y, is chi-square with v=1. Thus,
both have mgf m(t) = (1-2t)"?,t< 1/2. With U=Y,” +Y.’, use the result from Ex.
6.38 with a; = a, = 1 so that m, (t) = m(t)m(t) = (1-2t)"". Note that this is the mgf for a
exponential random variable with = 2, so the density function for U is

f,(u)y=1e™?, u>0 (this is also the chi-square distribution with v =2.)

(Special case of Theorem 6.3) The mgf for the normal distribution with parameters p and
o is m(t) ="'/ Since the Y;’s are independent, the mgf for U is given by

my (1) = E@€*) = [JE@) = mat) = expjutYa, +(t°6* /2)Y a°].
i=1 i=1
This is the mgf for a normal variable with mean p» @ and variance 6> ) a’.

The probability of interest is P(Y, > Y;) = P(Y,— Y, >0). By Theorem 6.3, the
distribution of Y» — Y; is normal with i = 4000 — 5000 = —1000 and o* = 400* + 300* =

250,000. Thus, P(Y,—Y,;>0)=P(Z> OJ%> )=P(Z>2)=.0228.

a. From Ex. 6.41, Y has a normal distribution with mean p and variance o*/n.

b. For the given values, Y has a normal distribution with variance 6*/n = 16/25. Thus,
the standard deviation is 4/5 so that

PJY -y < 1)=P(-1<Y u<1)=P(-1.25<Z<1.25)=.7888.

c. Similar to the above, the probabilities are .8664, .9544, .9756. So, as the sample size
increases, so does the probability that P(|Y —u| < 1).

The total weight of the watermelons in the packing container is given by U = ?:1 Y, ,so
by Theorem 6.3 U has a normal distribution with mean 15n and variance 4n. We require
that .05=P(U >140)=P(Z > %). Thus, % = Z0s= 1.645. Solving this

nonlinear expression for n, we see that n = 8.687. Therefore, the maximum number of
watermelons that should be put in the container is 8 (note that with this value n, we have
P(U > 140) =.0002).
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6.45

6.46

6.47

6.48

6.49

6.50

6.51

6.52

6.53

By Theorem 6.3 we have that U = 100 +7Y; + 3Y, is a normal random variable with mean
w= 100+ 7(10) + 3(4) = 182 and variance 6° = 49(.5)* + 9(.2)* = 12.61. We require a

value ¢ such that P(U>c¢)=P(Z > j%) So, $5 =233 and ¢ = $190.27.

The mgf for W is m,, (t) = E(e") = E(e®"'P") =m, (2t/B) = (1-2t)™*. This is the mgf
for a chi—square variable with n degrees of freedom.

By Ex. 6.46, U = 2Y/4.2 has a chi—square distribution with v="7. So, by Table III,
P(Y >33.627) = P(U>2(33.627)/4.2) = P(U > 16.0128) = .025.

From Ex. 6.40, we know that V =Y,> + Y, has a chi-square distribution with v=2. The
density function for Vis f,(v)=1e™?,v>0. The distribution function of U = W ois
F,(u)=PU <u)=P(V <u’)=F,(u%), so that f,(u)=F/(u)= ue™ >, u>0. A sharp
observer would note that this is a Weibull density with shape parameter 2 and scale 2.

The mgfs for Y and Y, are, respectively, m, (t) =[1-p+ pe']", m, (O=[-p+ pe']™
]nl+n2 .

Since Y, and Y are independent, the mgf for Y, + Y, is m, (t)xm, (t)=[1—p + pe
This is the mgf of a binomial with n; + n, trials and success probability p.

The mgf for Yis m, (t)=[1- p+ pe']". Now, define X =n-Y. The mgf for X is

m, (1) = E(e*)=E(e"" ") =e"m, (-t)=[p+(1- pe']".
This is an mgf for a binomial with n trials and “success” probability (1 — p). Note that the
random variable X = # of failures observed in the experiment.

From Ex. 6.50, the distribution of n, — Y, is binomial with n, trials and “success”
probability 1 — .8 =.2. Thus, by Ex. 6.49, the distribution of Y; + (n, — Y;) is binomial
with n; + n; trials and success probability p = .2.

The mgfs for Y, and Y are, respectively, m, (t) = gl m, (t) = gD

14, )(e'-1)

a. Since Y; and Y are independent, the mgf for Y, + Y, is m, (t)xm, (t) =e“
This is the mgf of a Poisson with mean A; + A;.
b. From Ex. 5.39, the distribution is binomial with m trials and p =

x+x2 :

The mgf for a binomial variable Y; with nj trials and success probability p; is given by
m, () =[1- p, + pe'T". Thus, themgffor U =>""Y, ism,t)=[].[1- p + pe']"

a. Letpj=pandn;=m forall i. Here, U is binomial with m(n) trials and success
probability p.

b. Let pi =p. Here, U is binomial with Zin:l n; trials and success probability p.

C. (Similar to Ex. 5.40) The cond. distribution is hypergeometric w/ r =n;, N = Z n .
d. By definition,
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P(Y+Yy=k, Y Yi=m-k) _ P(Y+,=K)P(Y Yi=m—k)
P(ZYi=m) a P(ZY;=m)

n _ P(Y,4Y,=k XY,=m) _
P(Yl +Y2 =k | zizlYi) - l;(zz\(,:m) =

M

= ————, which is hypergeometric with r = n; + n.

=

e. No, the mgf for U does not simplify into a recognizable form.

a. The mgf for U = Zin:l Y, is m,(t) = D , which is recognized as the mgf for a
Poisson w/ mean Zi A

b. This is similar to 6.52. The distribution is binomial with m trials and p = %

c. Following the same steps as in part d of Ex. 6.53, it is easily shown that the conditional

1 ‘*’kz

distribution is binomial with m trials and success probability S

LetY=Y; + Y, Then, by Ex. 6.52, Y is Poisson with mean 7 + 7 = 14. Thus,
P(Y>20)=1-P(Y<19)=.077.

Let U = total service time for two cars. Similar to Ex. 6.13, U has a gamma distribution

with a =2, p=1/2. Then, P(U>1.5)= j4ue-2“du = .1991.
1.5

For each Yj, the mgf'is my (t) = (1-Bt)™, t<1/B. Since the Y; are independent, the mgf

forU=>%"Yism®=[Ja-pH™ =(1- Bt) 2o

This is the mgf for the gamma with shape parameter ZLI o, and scale parameter f3.

@

a. The mgf for each W; is m(t) =

© qe) The mgf for Y is [m(t)]" —( ) which is the

mgf for the negative binomial distribution.

b. Differentiating with respect to t, we have
r—1 t
M) = 2] <2 |, =5 ~E)

(1-ge")
Taking another derivative with respect to t yields

r+l .2 ot

" _ (1-ge")™"r’ pe' (pe)" —r(pe")" (r+1)(-ge")(1-ge')"
m (t)|t =0 — (1-ge )2('”) |t:O

— pr2+rp(2r+1)q _ E(YZ)

Thus, V(Y) = E(Y?) — [E(Y)]* = rg/p>.
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c. This is similar to Ex. 6.53. By definition,

m—k-1
P(W, =k, SW,=m) __ P(lek:Z::ZWi:m—k) _ P(W1=k)P(Z,n:2Wi=m—k) _ [ r-2 J

PW, =k[ZW;) = PEIW=m) P(XW;=m) B P(XW;=m) - [m—lj )

r-1

6.59  The mgfs for Y; and Y are, respectively, m, (t)=(1-2t)™"*, m, (t) =(1-2t)™*">. Thus
the mgf for U =Y, + Yo =my(t) =m, (t) xm, (t)=(1- 2t) 2’2 which is the mgf for a

chi—square variable with v; + v, degrees of freedom.

6.60 Note that since Y; and Y are independent, my(t) =m, (t) xm, (t). Therefore, it must be
so that mw(t)/ my (t) =m, (t). Given the mgfs for W and Y;, we can solve for m, (t):

:ﬂz _ —(v=v1)/2
my, (t) 120" (1-2t) .

This is the mgf for a chi—squared variable with v — v, degrees of freedom.

6.61 Similar to Ex. 6.60. Since Y, and Y> are independent, mw(t) =m, (t) xm, (t). Therefore,
it must be so that mw(t)/ m, (t) =m, (t). Given the mgfs for W and Y,

re'-1)
e RSN )

my, (t) :W—e

This is the mgf for a Poisson variable with mean A — ;.

6.62 E{exp[t, (Y, +Y,) +t,(Y, =Y,)]} = E{exp[(t, +,)Y, +(t, +1,)Y, ]} = my, (t, +t2)mY2 (t, +t,)
= exp[< (t, +1,)* Jexp[S(t, —t,)*1=exp[<t," Jexp[t, T’

= m, (t)m, (t,).
Since the joint mgf factors, U; and U, are independent.

6.63  a. The marginal distribution for Uy is f, (u,) = J‘B%uze*“mduz: 1,0<u;<1l.
0
1

b. The marginal distribution for U, is f,, (u,)= J.B%uze‘”z/ﬁdul :B%uze_uz/B , Uy >0. This
0
is a gamma density with a = 2 and scale parameter .

C. Since the joint distribution factors into the product of the two marginal densities, they
are independent.

6.64 a. By independence, the joint distribution of Y, and Y, is the product of the two marginal
densities:

_ I )
f(y,Y,) =ty y e Py > 0,y, > 0.

" T(a)M(ay)B
With U and V as defined, we have that y; = u;u; and y, = Uy(1-U;). Thus, the Jacobian of
transformation J = U, (see Example 6.14). Thus, the joint density of U; and U, is
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- 1 U,/
F QUL U) = e WU U, (- )T e Pu,

_ 1 a;-1 ap—l, ap+oy—l —u, /B :
—Wull (1—U1)2 u, " e , with 0 <u; <1, and u, > 0.

_ -1 -1 1 Hay—l VB Ay, T(ogtay,) -1 -1 :
b. fy, (U) = oy U (1= )™ [y e Py = ey (1 - uy )™, with
0

0 <u; <1. This is the beta density as defined.

AR (g tay) 2 ’

1
_ oytop =1 —u, /B a, -1 o,-1 _ o+, =1 —u, /B
c. fu, () =zt U, e J'—F(al)‘r(%) U (I =u)™ duy = o e
0
with U, > 0. This is the gamma density as defined.
d. Since the joint distribution factors into the product of the two marginal densities, they

are independent.

6.65 a. By independence, the joint distribution of Z; and Z; is the product of the two marginal
densities:

1 A (422
f(z,2,)=5e"""2"",

With U; = Z; and U, = Z; + Z,, we have that z; = u; and z, = U, — U;. Thus, the Jacobian
of transformation is

Thus, the joint density of U; and U is
2 2 2 2
f(ul’uz) :ie*[ul +HUp = )* 12 _ ie—(Zul —2uu,+u3)/2 .

b. E(Ul): E(Z1) =0, E(Uz): E(Z1 +Zz):09V(U1):V(Z1):L
V(Uz) :V(Z1 +Zz):V(Zl)+V(Zz):2a COV(UpUz): E(Z12) =1

c. Not independent since p # 0.

d. This is the bivariate normal distribution with p; =, =0, o; =1, 63 =2, and p = +-

6.66 a. Similar to Ex. 6.65, we have thaty; = u; — U, and y, = U,. So, the Jacobian of
transformation is

Thus, by definition the joint density is as given.

b. By definition of a marginal density, the marginal density for U, is as given.



132

Chapter 6: Functions of Random Variables

Instructor’s Solutions Manual

6.67

6.68

6.69

c. If Y, and Y, are independent, their joint density factors into the product of the marginal
densities, so we have the given form.

a. We have that y; = u;U, and y, = U;. So, the Jacobian of transformation is
u2 ul
0

J= =|u,|.

Thus, by definition the joint density is as given.
b. By definition of a marginal density, the marginal density for U, is as given.
c. If Y, and Y, are independent, their joint density factors into the product of the marginal

densities, so we have the given form.

a. Using the result from Ex. 6.67,
f(u,u,)=8(uu,)uu, =8uu;,0<u;<1,0<u,<1.

b. The marginal density for U is
fy (u) = J1'8u1u§du2 =20,,0<u; <1.
The marginal density for U, is 0
fy,(u,) = j.8u1u§dul =4u;,0<u < 1.
0

The joint density factors into the product of the marginal densities, thus independence.

a. The joint density is f(y,y,) =, y1>1,y2> 1.

b. We have that y; = u;u; and y, = Uy(1 — U;). The Jacobian of transformation is U,. So,
f(u,u,)=

with limits as specified in the problem.

1
ufu3 (1-u, )? 2

C. The limits may be simplified to: 1/u; <up, 0 <u; < 1/2, or 1/(1-U;) < Uy, 172<u; < 1.

d. 170 <uy < 172, then f,, (u) = [ gmsdu, =57t
1/y

- 1 -1
Ifl/ZSUlSl,then fUI(ul)_ J‘mduz =
1/(1=u;)
e. Not independent since the joint density does not factor. Also note that the support is

not rectangular.
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a. Since Y; and Y, are independent, their joint density is f(y,,y,)=1. The inverse

transformations are y, =“3% and y, =-5=. Thus the Jacobian is

1
J= 21 =7, so that

2
f(u,,u,) =%, with limits as specified in the problem.
b. The support is in the shape of a square with corners located (0, 0), (1, 1), (2, 0), (1, —1).

D= =

¢. If0<u; <1, then f, ()= j%du2 =Uu,.
2y
If1<u;<2,then fy (u)= [3du, =2-u,.
u -2
2+u,
d. If-1 <u, <0, then f, (u,)= j%du2 =1+u,.
J'%du2 =1-u,.

U,

If0<u,<1,then f, (u,)=

a. The joint density of Y; and Y, is f(y,,y,)= ﬁ%e’(y‘m)/ﬁ . The inverse transformations

_ U U 1 1
are Y, =i and y, = T and the Jacobian is
) Y
J= I+ (14u)?| |y
L U] (14uy)?

Uy (14u,)?
So, the joint density of U; and U, is
f(ulauz) = BLze_UI/B »

(14u,)% ?

u; >0, u,>0.

b. Yes, U; and U, are independent since the joint density factors and the support is
rectangular (Theorem 5.5).

Since the distribution function is F(y) =y for 0 <y <1,
a. g,UuW=2(1-u),0<u=<l.
b. Since the above is a beta density with a =1 and p =2, E(U;) =1/3, V(U;) = 1/18.

Following Ex. 6.72,
a. g, W=2u,0<u<l.

b. Since the above is a beta density with a =2 and p =1, E(U,) =2/3, V(U;,) = 1/18.

Since the distribution function is F(y) =y/0 for 0 <y <0,
a. G, (y)=(y/6),0<y=e.

b. g (Y) =G (y)=ny"" /6", 0<y<8.

c. Itis easily shown that E(Yn) = -0, V(Y(n) = —2

n+1 (n+1)’(n+2) *
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6.75

6.76

6.77

6.78

6.79

Following Ex. 6.74, the required probability is P(Yn) < 10) = (10/ 15)° = .1317.

Following Ex. 6.74 with f(y) =1/6 for 0 <y <0,
' k-1 (g_y \N-K n k=1 -k
a. By Theorem 6.5, 9o (¥) = m(%) (e_ey) T = (k=Di(n—=K)! L0 0< y<6.

o"

0 6
. ' 0—y)" K 2 K n—-k .
b. ENw)= (kfl)’!‘('nfk)!J. YON gy = O (s (y) (l - %) dy. To evaluate this

0 0

integral, apply the transformation z = ¥ and relate the resulting integral to that of a
beta density witha =k + 1 and p=n—k+ 1. Thus, E(Yy)= %6

. Using the same techniques in part b above, it can be shown that E(Y(ﬁ)) = % 0’

-k+1)k 2
so that V(Yg) = (g 0

d. ENw—Yu1) =ENw) —ENw1) = 50— £16 = -1;0. Note that this is constant for

n+l1

all k, so that the expected order statistics are equally spaced.

a. Using Theorem 6.5, the joint density of Y and Y is given by
n! i k j 1= A 2
0 VYo = i () B =3 =)@ 0 <y = e

b. Cov(Y, Yi) = E(YYw) — E(Y§)E(Yw). The expectations E(Yj)) and E(Y ) were
derived in Ex. 6.76. To find E(Y;Y«), let U =Yy;/0 and v = y/0 and write

1v
E(YyYw) = cO _fjuj(v —uw)* v -v)"*dudv,
00

n!

(G-DI(k=1=)i(n—k)! *

ce{juk”(l - u)”‘kdu}[_[wj(l —w)< dw} =c0’[B(k +2,n—k +D[B(j+1,k - j)].

where ¢ = Now, let w = u/v so u=wv and du = vdw. Then, the integral is

_(k+D)j 2 . — _(k+Dj 2 2 _ —k+1 2
Slmphfylng’ this is (n+)(n+2) 6°. Thus’ COV(YU)’ Y(k)) T (n+D(n+2) 6" (n+1) 6" = (n+r1)2(;+2) 0.

C. V(¥ — Y)) = V(Y) + V(Y() = 2Cov(Y ), Yi)
(nk+Dk 2 4 (=jeDj a2 _2n—k+) a2 (k=j)(n-k+kiD) 02
(n+1)*(n+2) (n+1)*(n+2) (n+1)*(n+2) (n+1)*(n+2)

From Ex. 6.76 with 0 = 1, g, (¥) = gy Y (1= ¥)™™ = 12 sy (1 - y)™™
Since 0 <y < 1, this is the beta density as described.

The joint density of Yy and Y is given by (see Ex. 6.77 with j = 1, k=n),

G (1 ¥o) =0 = D% = 2T () =n(n=D(E)' (¥, — )", 0 <Y1 <yn <6.
Applying the transformation U = Y1/Y) and V = Y(,), we have that y; = uv, y, =V and the
Jacobian of transformation is v. Thus,

fu,v)=n(n-DE)(v-u)2v=nn-DE)d-uw)"v"",0<u<1,0<v<0.
Since this joint density factors into separate functions of U and v and the support is
rectangular, thus Y)/Yn and V = Y, are independent.
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The density and distribution function for Y are f(y)=6y(1-y)and F(y)=3y> -2y°,
respectively, for 0 <y <1.

G (¥)=By* —2y*), 0<y<1.

’ n-1 n-1
0 (¥) =Gl () =n(3y* =2y ) 6y —6y*) = 6ny(1 - y)By* —2y* ], 0=y < 1.
c. Using the above density with n = 2, it is found that E(Y ,))=.6286.

T &

a. With f(y)=4e”" and F(y)=1-¢"",y>0:

yp _
9y (Y) = n[e y/ﬁ]n re y/B =5e VPy=0.

This is the exponential density with mean f/n.
b. With n =5, § =2, Y(;) has and exponential distribution with mean .4. Thus

P(Y)<3.6)=1—e” =.99988.

Note that the distribution function for the largest order statistic is
G =[FI =[1-e"],y=0.
It is easily shown that the median m is given by m= ¢, = fIn2. Now,
P(Yim>m)=1-P(Ym<m)=1- [F@n2)] =1-(5)"

Since F(M) = P(Y <m) =5, P(Y(m > M) =1 —P(Yoy <m) =1 = G, (M) = 1 - (.5)". So,

the answer holds regardless of the continuous distribution.

The distribution function for the Weibull is F(y)=1- e Ve, y > 0. Thus, the
distribution function for Y(;), the smallest order statistic, is given by
G () =1-[1-Fy =1-f>"[ =1-e™" y>0,

This is the Weibull distribution function with shape parameter m and scale parameter a/n.

Using Theorem 6.5, the joint density of Y(;y and Y(») is given by
g(l)(z)(yp Y,)=2,0<y1<y,< 1.

1/2 1
Thus, P2Y1) <Y@) = I _[ 2dy,dy, =.5.

0 2y

Using Theorem 6.5 with f(y)=4e™" and F(y)=1-e7",y>0:
| _ k—1( _ n—k e VB n! _ kK-1( _ n—k+1
a9 (y) =i (e @) et = et (- ) e ) sy 20,

_ ! -Yi/B i1 -y;/B —Y /P _l_j( -y, /ﬁ)n—kﬂ —y. /B
b. guxk)(vpyk)—m(l—e ") (e e e e,

OSy]Syk<OO
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6.87  For this problem, we need the distribution of Y(;) (similar to Ex. 6.72). The distribution
function of Y is

y
F(y)=P(Y <y)=[(1/2)e™ > dy =1-e" >0 y>4,
4
a. gu(y)= Z[e—(1/2)<y—4>]1 1o /0 g y> g,

b. E(Ya) =5.
6.88 This is somewhat of a generalization of Ex. 6.87. The distribution function of Y is

y
F(y)=P(Y <y)=[e™dy=1-e" ,y>0.
0

a9y =nle 0 e < neo 1y >,
b. E(Y(])) = % +0.

6.89 Theorem 6.5 gives the joint density of Y(i) and Y, is given by (also see Ex. 6.79)
g(l)(n)(yp yn) =n(n- 1)(yn - yl)n—z, 0<yi<yn<1.
Using the method of transformations, let R = Yn — Y1y and S=Y(;). The inverse
transformations are y; = S and y, = r + S and Jacobian of transformation is 1. Thus, the
joint density of R and S is given by
f(r,s)=n(n=1)(r+s—s)">=n(n-Hr"?,0<s<1-r<l.

(Note that since r =y, — Yy, r <1 -y, or equivalently r <1 —sand thens<1-r).
The marginal density of R is then

1-r
fo(r) = .fn(n —Dr"2ds=n(n-Dr"*(1-r),0<r<1.
0

FYI, this is a beta density witha=n—1 and B = 2.

6.90 Since the points on the interval (0, t) at which the calls occur are uniformly distributed,
we have that F(w) =w/t, 0 <w <t.
a. The distribution of W) is G, (W) = [FW)]* =w*/t*, 0<w<t ThusP(W@g<1)=

G, () =1/16.

2 2
b. Witht=2, EW,,) = [4w' /2 dw=[w*/4dw =16.
0 0

6.91 With the exponential distribution with mean 0, we have f(y)=4e™"?, F(y)=1-¢"",

fory>0.
a. Using Theorem 6.5, the joint distribution of order statistics W) and Wj_ is given by
, —wi /0 Y2 —w;/0 Y- —(W;_,+W;)/0
950 Wi W) = Gty (1 —e” ) (e ' ) é(e o ) 0 < Wjy <wWj<co.
Define the random variables S = Wj_), Tj = W, — W(j_1). The inverse transformations
are Wj_; = S and w; = t; + s and Jacobian of transformation is 1. Thus, the joint density
of S and Tjis given by
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—s/0 (t;+s)/0 |~ i —(25+t;)/0
f(s.t)) = G w(l e’ ) (e ) 912(6 ' )

n! —(n=j+D)t; /8 4 ( _5/9)1—2( —(n—j+2)s/e) .
=G € 1-e e ,$>0,>0.

The marginal density of Tjis then

—(n=j+t; /0 T - =2 ( —(n-j
f (t )= - 2)‘(n e (n-j+D)t; ﬁzj(l_e 5/9) (e (n ]+2)S/9).js'

0

Employ the change of variables u =e™*'® and the above integral becomes the integral

of a scaled beta density. Evaluating this, the marginal density becomes
o (t)) = L N

This is the density of an exponential distribution with mean 6/(n — j+1).
b. Observe that
JZr;(n —j+ DT; =nW, + (n =W, -W) +(n=2)(\W; -W,) +...+(n—r+HW, =W, )
=W +Wo+ AW+ (=1 + DHW, = erzle +(h—NW. =U. .
Hence, E(U,) = erzl(n —r+1)E(T;)=r0.

By Theorem 6.3, U will have a normal distribution with mean (1/2)(n— 3p) =— p and
variance (1/4)(c” + 90%) = 2.50".

By independence, the joint distribution of l and Ris f(i,r)=2r,0<i<land0<r<I.
To find the density for W, fix R=r. Then, W= I’r so | = W /1 and |§—V'v =L (%) for
the range 0 <w <r<1. Thus, f(w,r)=+r/w and

f(w)=j’x/r/_wdr=%(ﬁ—w),O§W§ I

Note that Y; and Y; have identical gamma distributions with a =2, B =2. The mgf'is
m(t) = (1-2t)7>,t<1/2.
The mgf for U= (Y; +Y,)/2 is
m, (t) = E(e") = E"™*) =mt/2)mt/2)=(1-t)".
This is the mgf for a gamma distribution with oo =4 and B = 1, so that is the distribution
of U.

By independence, f(y,,y,)=1,0<y;<0,0<y,<1.

a. Consider the joint distribution of U; = Y;/Y, and V =Y,. Fixing V at v, we can write
U;=Y/v. Then, Y; =vU, and dy‘ =V. The joint density of U; and V is g(u,v)=V.
The ranges of U and v are as follows:
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6.96

6.97

o ify;<y;,thenO0<u<landO<v<lI
e ify;>Y,, then U has a minimum value of 1 and a maximum at 1/y, = 1/v.
Similarly, 0 <v<1

So, the marginal distribution of U; is given by

1

jvdv =1 0<u<l
0

ful ()=

1/u

— 1
J'vdv_2uz u>1
0

b. Consider the joint distribution of U, =—In(Y,Y;) and V =Y. Fixing V atv, we can
write U = —In(vY,). Then, Y= ¢e™"> /v and ddiuz =—e " /Vv. The joint density of U,

and Vis g(u,v) =—e" /v, with—Inv<u<oand 0 <v<1. Or, written another way,
e'<v<I

So, the marginal distribution of U, is given by
1

fuz(u) = _[—e‘” /vdv =ue™,0<u.

er

c. Same as Ex. 6.35.

Note that P(Y; > Y,) =P(Y; — Y>> 0). By Theorem 6.3, Y| — Y, has a normal distribution
with mean 5 — 4 =1 and variance 1 + 3 =4. Thus,
P(Y1—=Y,>0)=P(Z>-1/2)=.6915.

The probability mass functions for Y, and Y, are:

yo | 0 [ 1 [ 2] 3 | 4 y | o[ 1] 213

pi(y1) | 4096 | 4096 | .1536 | .0256 | .0016  pa(y2) | .125 | 375 | 375 | .125

Note that W =Y + Y, is a random variable with support (0, 1, 2, 3, 4, 5, 6, 7). Using the
hint given in the problem, the mass function for W is given by

p(w)

P1(0)p2(0) = .4096(.125) = .0512

p1(0)p>(1) + pi(1)p»(0) = .4096(.375) + .4096(.125) = .2048

01(0)p2(2) + py(2)px(0) + p(1)p(1) = .4096(.375) + .1536(.125) + .4096(.375) = .3264

wN|—|o|s

P1(0)P2(3) + P1(3)P2(0) + p1(1)P2A(2) + Pi(2)pa(1) = .4096(.125) +.0256(.125) + .4096(.375)
+.1536(.375) = .2656

4 | p(Dp3) + Pi3)pa(D) + Pr2)pa(2) + pr(@)pa(0) = .4096(.125) + .0256(.375) + .1536(.375)
+.0016(.125) = .1186

(V)]

P1(2)P2(3) + Pi3)Pa(2) + pi(A)px(1) = .1536(.125) + .0256(.375) + .0016(.375) = .0294

=)}

DL(A)P2(2) + pi(3)px(3) = .0016(.375) + .0256(.125) = .0038

7 | pi@)pa(3) = .0016(.125) = .0002

Check: .0512 +.2048 + .3264 + .2656 + .1186 + .0294 + .0038 + .0002 = 1.
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The joint distribution of Yy and Yy is f(y,,y,)=e " y;>0,y,>0. Let U, = o,

U, =Y,. The inverse transformations are y; = U;U,/(1 — U;) and Yy, = U, so the Jacobian of
transformation is

Uy Uy

(1-u;)? I-u | —
0 1
Thus, the joint distribution of U; and U, is

f(Ul,U y=¢e" [uu, /(1= +u, ] (1uj) =g lw/0-u) (1uj) L0<u <1,u,>0.
1

Therefore, the marginal distribution for U, is

)

J= (ou)?

fU1 (ul) — J‘e—[uﬂ(l—ul) (l_uﬁdu2 =1,0<su <1,
0
Note that the integrand is a gamma density function witha =1, =1 —u;.
This is a special case of Example 6.14 and Ex. 6.63.

Recall that by Ex. 6 81, Y1) is exponential with mean 15/5 = 3.
a. PYpH>9)= e
b. P(Y(1)< 12)— 1 —e

If we let (A, B) = (-1, 1) and T = 0, the density function for X, the landing point is
f(x)=1/2,-1<x<1.
We must find the distribution of U = |X|. Therefore,
Fuu)=PU<Suw=P(X|fu)=P(-usXsu)=[u—-(—uj2=u.

So, fu(u) =F'y(u)=1, 0 <u < 1. Therefore, U has a uniform distribution on (0, 1).

Define Y; = point chosen for sentry 1 and Y, = point chosen for sentry 2. Both points are

chosen along a one—mile stretch of highway, so assuming independent uniform

distributions on (0, 1), the joint distribution for Y, and Y; is
f(y,y,)=1,0sy1<1L,0<y,<1.

The probability of interest is P(]Y; — Y2 | < 1). This is most easily solved using geometric

considerations (similar to material in Chapter 5): P([Y; — Y, | < 1) = .75 (this can easily

be found by considering the complement of the event).

The joint distribution of Y, and Y, is f (y,, y,) = s e V)2

transformations U; = Y,/Y; and U, = Y,. With y; = u;U; and Yy, = |U,|, the Jacobian of
transformation is U so that the j oint density of U and U, is

. Considering the

2 2
f(u,u,)= (TSt (A W Y P U T T
The marginal density of U; is
— |4 —{u3 (1+u7)]/2 (1 w2 (Y2
fUl(ul)_J.ﬁuAe o duz_,[FUze 2 du,
bt .

Using the change of variables v = U] so that du, = 577 dv gives the integral
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6.104

6.105

6.106

n(1+u),oo<u1<oo

f (u) J'% v(1+u|)/2d _
0

The last expression above comes from noting the integrand is related an exponential
density with mean 2/(1+u’). The distribution of U; is called the Cauchy distribution.

a. The event {Y; =Y,} occurs if

{(Yi=1LY2=1),Y1=2,Y,=2),(Y1=3,Y2=3), ...}
So, since the probablhty mass function for the geometric is given by p(y) = p(1 —p)’ ',
we can find the probability of this event by

P(Yi=Y2)=p(1)> +p2)’ +pB3) ...= p*+ p*(1-p)* + p’(A— p)* +...

= 2 p’ p
=p ) (1-p)’ = = :
JZ_(; 1-(1-p?* 2-p

b. Similar to part a, the event {Y, —Y,=1} = {Y,; =Y, + 1} occurs if
{(Vi=2,Y2=1),(¥1=3,Y2=2),(Y1=4,Y2=3), ...}
Thus,

P(Yi—Y2=1)=p(2) p(1) +p(3) p(2) + p(4) p3) +
PP P =
. Define U =Y, —Y,. To find py(u) = P(U = u), assume first that u > 0. Thus,
PU=u=P{,-Y,=u)= ZP(Y =U+Y,)P(Y, =Yy,)= Z p-p)** " p1-p)*"

Y= Y=
“p- P X = P pr Ry = PO
If u <0, proceed similarly with y, =y; — U to obtain P(U =u) = p(12——p) . These two
. . oy pA=p)
results can be combined to yield p,(u)=PU =u) = ,u=0,+1,+£2, ...

The inverse transformation is y = 1/u— 1. Then,
1 a+f _ p-1 a-1
fu (U) = g (5) U = gmuP A -u)* ', 0<u< 1.
This is the beta distribution with parameters 3 and a.

Recall that the distribution function for a continuous random variable is monotonic
increasing and returns values on [0, 1]. Thus, the random variable U = F(Y) has support
on (0, 1) and has distribution function

F,(u)=PU <u)=P(F(Y)<u)=P(Y <F'(u))=F[F"(u)]=u,0<u<l.
The density function is f,(u) =F;(u)=1, 0 <u <1, which is the density for the uniform
distribution on (0, 1).



Chapter 6: Functions of Random Variables 141

6.107

6.108

6.109

6.110

6.111

Instructor’s Solutions Manual

The density function for Yis f(y)=+4,-1<y<3. ForU= Y?, the density function for U

is given by
f (W)= o1 [ F ) + F (),

as with Example 6.4. If -1 <y <3, then 0 <u<9. However, if ] <u<9, f(—\/a) is not
positive. Therefore,

fo(u)=

L (d+0)=— 1<u<9

The system will operate provided that C; and C, function and C; or C, function. That is,
defining the system as S and using set notation, we have
S=(C,nC)N(C,uC,)=(C,nC,nC;))uU(C,nC,NnC,).
At some Y, the probability that a component is operational is given by 1 — F(y). Since the
components are independent, we have
P(S)=P(C,nC,nC,)+P(C,nC,nC,)-P(C,nC,nC,nC,).
Therefore, the reliability of the system is given by

[1-FYI +[1-Fy)’ - [1-FW)I*=[1 - FW)TIIL + Fy)l.

Let Cs be the production cost. Then U, the profit function (per gallon), is
G -Cy <Y <3
~|C,-C, otherwise

So, U is a discrete random variable with probability mass function
2/3

P(U=Ci-C3)= [20y*(1-y)dy=4156.
1/3

P(U=C,—C3)=1-,4156 = .5844.

a. Let X = next gap time. Then, P(X <60)=F, (60)=1-¢.
b. If the next four gap times are assumed to be independent, then Y = X; + X, + X5 + X4
has a gamma distribution with o =4 and f =10. Thus,

F(y) =t y'e"", y20.

a. LetU=1InY. So, § =+ and with fy(u) denoting the normal density function,

fo(y)=5 fo(ny) = mexpl_ (‘“y W’ J y>0.
b. Note that E(Y) = E(eY) = my(1) = e**° /2, where my(t) denotes the mgf for U. Also,
E(YZ) — E(eZU) — mu(z) — e2u+20'2 S0 V(Y) — e2u+262 . (eu+52/2)2 — e2u+0'2 (esz _ 1)
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6.112

6.113

6.114

6.115

6.116

a. Let U=1InY. So, § =+ and with fy(u) denoting the gamma density function,

fy (y) _ % fU (ln y) _ yr(;)ﬁa (ln y)ufle*(ln)’)/ﬁ — W(ln y)onfl y*(1+B)/B’ y > 1.

b. Similar to Ex. 6.111: E(Y) = E(e”) =my(1) = (1-p)™*, B < 1, where my(t) denotes the
mgf for U.

c. E(YH)=E@E)=my2)= 1-2B)*, p<.5,s0that V(Y)= (1-2B) ™ — (1-B) .

a. The inverse transformations are y; = U;/U; and Y, = U, so that the Jacobian of
transformation is 1/|u|. Thus, the joint density of U; and U, is given by

1
ful,uz(ul’uz) = fYI,Yz(U1/U2auz)m-
2

b. The marginal density is found using standard techniques.

c. If Y, and Y, are independent, the joint density will factor into the product of the
marginals, and this is applied to part b above.

1/3

The volume of the sphere is V= 47R*, or R= (£V )", so that 4 = 1(2)"*v2"_ Thus,

2/3. -1/3
f,(V)=2(Z)° v, 0<v< 4n.

a. Let R = distance from a randomly chosen point to the nearest particle. Therefore,
P(R > r) = P(no particles in the sphere of radius r) = P(Y = 0 for volume % 7r’).
Since Y = # of particles in a volume V has a Poisson distribution with mean Av, we have
PR>r1)=P(Y=0)=e @I >0,
Therefore, the distribution function for Ris F(r)=1-P(R>r)=1—-¢ ¥ V7% and the
density function is

f(r)=F'(r)=4rnrie @9 >0,

b. Let U=R’. Then,R=U""and & =1y~ Thus,
f,(U) = 4z g W=/ > 0,

This is the exponential density with mean .

a. The inverse transformations are y; = U; + U, and Y, = Up. The Jacobian of
transformation is 1 so that the joint density of U; and U, is

fuljuz(ul,uz): fY],Yz(u1+u2,u2).
b. The marginal density is found using standard techniques.

c. If Y, and Y, are independent, the joint density will factor into the product of the
marginals, and this is applied to part b above.



