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Chapter 9: Properties of Point Estimators and Methods of Estimation 
 
9.1 Refer to Ex. 8.8 where the variances of the four estimators were calculated.  Thus, 

eff( 1θ̂ , 5θ̂ ) = 1/3 eff( 2θ̂ , 5θ̂ ) = 2/3 eff( 3θ̂ , 5θ̂ ) = 3/5. 
 

9.2 a. The three estimators a unbiased since: 
E( 1μ̂ ) = ( ) μ=μ+μ=+ )()()( 2
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 b. The variances of the three estimators are  
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 Thus,  eff( 3μ̂ , 2μ̂ ) = 
)2(8

2

−n
n , eff( 3μ̂ 1μ̂ ) = n/2. 

 

9.3 a. E( 1θ̂ ) = E(Y ) – 1/2 = θ + 1/2 – 1/2 = θ.  From Section 6.7, we can find the density 
function of 2θ̂  = Y(n): 1)()( −θ−= n

n ynyg , θ ≤ y ≤ θ + 1.  From this, it is easily shown 

that E( 2θ̂ ) = E(Y(n)) – n/(n + 1) = θ. 
 

b. V( 1θ̂ ) = V(Y ) = σ2/n = 1/(12n).  With the density in part a, V( 2θ̂ ) = V(Y(n)) = 2)1)(2( ++ nn
n . 

Thus, eff( 1θ̂ , 2θ̂ ) = 2

2

)1)(2(
12

++ nn
n . 

 
9.4 See Exercises 8.18 and 6.74.  Following those, we have that V( 1θ̂ ) = (n + 1)2V(Y(n)) = 

2
2 θ+n

n .  Similarly, V( 2θ̂ ) = ( )21
n

n+ V(Y(n)) = 2
)2(

1 θ+nn .  Thus, the ratio of these variances is 
as given. 

 
9.5 From Ex. 7.20, we know S2 is unbiased and V(S2) = V( 2

1σ̂ ) = 1
2 4

−
σ

n .  For 2
2σ̂ , note that Y1 – 

Y2 is normal with mean 0 and variance σ2.  So, 2

2
21

2
)(

σ
−YY  is chi–square with one degree of 

freedom and E( 2
2σ̂ ) = σ2, V( 2

2σ̂ ) = 2σ4.  Thus, we have that eff( 2
1σ̂ , 2

2σ̂ ) = n – 1. 
 
9.6 Both estimators are unbiased and V( 1λ̂ ) = λ/2 and V( 2λ̂ ) = λ/n.  The efficiency is 2/n. 
 
9.7 The estimator 1θ̂  is unbiased so MSE( 1θ̂ ) = V( 1θ̂ ) = θ2.  Also, 2θ̂  = Y  is unbiased for θ 

(θ is the mean) and V( 2θ̂ ) = σ2/n = θ2/n.  Thus, we have that eff( 1θ̂ , 2θ̂ ) = 1/n. 
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9.8 a. It is not difficult to show that 22

2 1)(ln
σμ∂

∂ −=yf , so I(μ) = σ2/n,  Since V(Y ) = σ2/n, Y  is 

an efficient estimator of μ. 
 

b. Similarly, 22

2 )(ln
λλ∂

∂ −= yyp  and E(–Y/λ2) = 1/λ.  Thus, I(λ) = λ/n.  By Ex. 9.6, Y  is an 
efficient estimator of λ. 
 

9.9 a. X6 = 1. 
b.-e. Answers vary. 
 

9.10 a.-b. Answers vary. 
 
9.11 a.-b. Answers vary. 

c. The simulations are different but get close at n = 50. 
 

9.12 a.-b. Answers vary. 
 
9.13 a. Sequences are different but settle down at large n. 

b. Sequences are different but settle down at large n. 
 

9.14 a. the mean, 0. 
b.-c. the variability of the estimator decreases with n. 
 

9.15 Referring to Ex. 9.3, since both estimators are unbiased and the variances go to 0 with as 
n goes to infinity the estimators are consistent. 

 
9.16  From Ex. 9.5, V( 2

2σ̂ ) = 2σ4 which is constant for all n.  Thus, 2
2σ̂  is not a consistent 

estimator. 
 
9.17 In Example 9.2, it was shown that both X  and Y  are consistent estimators of μ1 and μ2, 

respectively.  Using Theorem 9.2, X – Y  is a consistent estimator of μ1 – μ2. 
 
9.18 Note that this estimator is the pooled sample variance estimator 2

pS  with n1 = n2 = n.  In 

Ex. 8.133 it was shown that 2
pS  is an unbiased estimator.  Also, it was shown that the 

variance of 2
pS  is 

12
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21
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−
σ

=
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σ
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.  Since this quantity goes to 0 with n, the estimator 

is consistent. 
 
9.19 Given f (y), we have that E(Y) = 1+θ

θ  and V(Y) = 2)1)(2( +θ+θ
θ  (Y has a beta distribution with 

parameters α = θ and β = 1.  Thus, E(Y ) = 1+θ
θ  and V(Y ) = 2)1)(2( +θ+θ

θ
n

.  Thus, the 

conditions are satisfied for Y  to be a consistent estimator. 
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9.20 Since E(Y) = np and V(Y) = npq, we have that E(Y/n) = p and V(Y/n) = pq/n.  Thus, Y/n is 

consistent since it is unbiased and its variance goes to 0 with n. 
 
9.21 Note that this is a generalization of Ex. 9.5.  The estimator 2σ̂  can be written as 
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There are k independent terms in the sum, each with mean σ2 and variance 2σ4. 
 
a. From the above, E( 2σ̂ ) = (kσ2)/k = σ2.  So 2σ̂  is an unbiased estimator. 
b. Similarly, V( 2σ̂ ) = k(2σ4)/k2 = 2σ4/k.  Since k = n/2, V( 2σ̂ ) goes to 0 with n and 2σ̂  is 

a consistent estimator. 
 
 

9.22 Following Ex. 9.21, we have that the estimator λ̂  can be written as 
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 For Yi, Yi–1, we have that: 

λ=
λ+λ+λ−λ+λ

=
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1 iiii YVYVYYV , since Yi and Yi–1 are 

independent and non–negative (the calculation can be performed using the 
Poisson mgf). 
 

a. From the above, E( λ̂ ) = (kλ)/k = λ.  So λ̂  is an unbiased estimator of λ. 
b. Similarly, V( λ̂ ) < kγ/k2, where γ < ∞ is defined above.  Since k = n/2, V( λ̂ ) goes to 0 

with n and λ̂  is a consistent estimator. 
 
 
9.23 a. Note that for i = 1, 2, …, k, 

0)( 122 =− −ii YYE   2
122

2
122 )[(2)( −− −=σ=− iiii YYEYYV . 

 Thus, it follows from methods used in Ex. 9.23 that 2σ̂  is an unbiased estimator. 
 

b. ])[(
4
1])[(

4
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V k

i ii −=−=σ ∑ = − , since the Y’s are independent and 

identically distributed.  Now, it is clear that ])[(])[( 4
12

2
12 YYEYYV −≤− , and when this 

quantity is expanded, only moments of order 4 or less are involved.  Since these were 

assumed to be finite, ∞<− ])[( 4
12 YYE  and so ])[(

4
1)ˆ( 2

12
2 YYV

k
V −=σ  →  0 as n → ∞. 

 
c. This was discussed in part b. 
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9.24 a. From Chapter 6, ∑=

n

i iY
1

2  is chi–square with with n degrees of freedom. 

b. Note that 1)( =nWE  and nWV n /1)( = .  Thus, as n → ∞, Wn → 1)( =nWE  in 
probability. 
 
 

9.25 a. Since E(Y1) = μ, Y1 is unbiased. 
b. .6826.)11()1|(| 1 =≤≤−=≤μ− ZPYP  
c. The estimator is not consistent since the probability found in part b does not converge 
to unity (here, n = 1). 
 
 

9.26 a. We have that )()()( )()()( ε−θ−ε+θ=ε+θ≤≤ε−θ nnn FFYP .   
• If ε > θ, 1)()( =ε+θnF  and 0)()( =ε−θnF .  Thus, )( )( ε+θ≤≤ε−θ nYP  = 1. 

• If ε < θ, 1)()( =ε+θnF , ( )nnF θ
ε−θ=ε−θ )()( .  So, ( )nnYP θ

ε−θ−=ε+θ≤≤ε−θ 1)( )( . 

b. The result follows from ( )[ ] 11lim)(lim )( =−=ε+θ≤≤ε−θ θ
ε−θ

∞→∞→
n

nnn YP . 
 

9.27 ( ) ( )nnFFYPYP θ
ε

θ
ε−θ =−−=ε−θ−ε+θ=ε+θ≤≤ε−θ=ε≤θ− 11)()()()|(| )1()1()1()1( .  

But, ( ) 0lim =θ
ε

∞→
n

n for ε < θ.  So, Y(1) is not consistent. 
 
9.28 ( ) nFFYPYP α

ε+β
β−=ε−β−ε+β=ε+β≤≤ε−β=ε≤β− 1)()()()|(| )1()1()1()1( .  Since 

( ) 0lim =
α

ε+β
β

∞→

n
n  for ε > 0, Y(1) is consistent. 

 
9.29 ( ) nFFYPYP α

θ
ε−θ−=ε−θ−ε+θ=ε+θ≤≤ε−θ=ε≤θ− 1)()()()|(| )1()1()1()1( .  Since 

( ) 0lim =α
θ
ε−θ

∞→
n

n  for ε > 0, Y(1) is consistent. 
 
9.30 Note that Y is beta with μ = 3/4 and σ2 = 3/5.  Thus, E(Y ) = 3/4 and V(Y ) = 3/(5n).  

Thus, V(Y ) → 0 and Y  converges in probability to 3/4. 
 
9.31 Since Y  is a mean of independent and identically distributed random variables with finite 

variance, Y  is consistent and Y  converges in probability to E(Y ) = E(Y) = αβ. 
 

9.32 Notice that ∞=== ∫∫
∞∞

22
2

22 22)( dydy
y

yYE , thus V(Y) = ∞ and so the law of large 

numbers does not apply. 
 
9.33 By the law of large numbers, X  and Y  are consistent estimators of λ1 and λ2.  By 

Theorem 9.2, YX
X
+  converges in probability to 

21

1
λ+λ

λ .  This implies that observed values of 
the estimator should be close to the limiting value for large sample sizes, although the 
variance of this estimator should also be taken into consideration. 
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9.34 Following Ex. 6.34, Y2 has an exponential distribution with parameter θ.  Thus, E(Y2) = θ 

and V(Y2) = θ2.  Therefore, E(Wn) = θ and V(Wn) = θ2/n.  Clearly, Wn is a consistent 
estimator of θ. 

 
9.35 a. μ=μ++μ+μ= )()( 1 "nnYE , so nY  is unbiased for μ. 

b. ∑=
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c. In order for nY  to be consistent, it is required that V( nY ) → 0 as n → ∞.  Thus, it must 
be true that all variances must be finite, or simply ∞<σ }{max 2

ii . 
 

9.36 Let X1, X2, …, Xn be a sequence of Bernoulli trials with success probability p.  Thus, it is 

seen that ∑=
=

n

i iXY
1

.  Thus, by the Central Limit Theorem, 

n
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ˆ
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standard normal distribution.  By Ex. 9.20, it was shown that np̂  is consistent for p, so it 
makes sense that nq̂  is consistent for q, and so by Theorem 9.2 nnqp ˆˆ  is consistent for pq.  
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pq
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=  so that Wn converges in probability to 1.  By Theorem 9.3, the 

quantity 
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=  converges to a standard normal variable. 

 
9.37 The likelihood function is L(p) = ii xnx pp Σ−Σ − )1( .  By Theorem 9.4, ∑=

n

i iX
1

 is sufficient 

for p with =Σ ),( pxg i
ii xnx pp Σ−Σ − )1(  and h(y) = 1.  

 
9.38 For this exercise, the likelihood function is given by 
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b. When μ is known, use Theorem 9.4 with 
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c. When both μ and σ2 are unknown, the likelihood can be written in terms of the two 
statistics U1 =∑=

n

i iY
1

 and U2 =∑=

n

i iY
1

2  with h(y) = 2/)2( n−π .  The statistics Y  and S2 
are also jointly sufficient since they can be written in terms of U1 and U2. 
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9.39 Note that by independence, ∑=

=
n

i iYU
1

 has a Poisson distribution with parameter nλ.  
Thus, the conditional distribution is expressed as  
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Since the conditional distribution is free of λ, the statistic ∑=
=

n

i iYU
1

 is sufficient for λ. 
 

9.40 The likelihood is ( )∑∏ ==
− θ−θ=θ
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i i
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9.41 The likelihood is ( ) ( )∑∏ =
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9.42 The likelihood function is L(p) = nynnnyn pppp i −−Σ −=− )1()1( .  By Theorem 9.4, Y  is 

sufficient for p with =),( pyg nynn pp −− )1(  and h(y) = 1.  
 

9.43 With θ known, the likelihood is ( ) 1

1
)(
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is sufficient for α with ( ) 1
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),(
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=
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9.44 With β known, the likelihood is ( ) )1(

1
)(

+α−

=
α ∏βα=α

n

i i
nn yL .  By Theorem 9.4, U = 
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 is sufficient for α with ( ) )1(),( +α−αβα=α uug nn  and h(y) = 1. 
 
9.45 The likelihood function is  
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Thus, U = ∑=

n

i iYd
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)(  is sufficient for θ because by Theorem 9.4 L(θ) can be factored 

into, where u = ∑=

n

i iyd
1

)( , [ ]ucaug n )(exp)]([),( θ−θ=θ  and h(y) = ∏=
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i iyb
1

)( .   
 
9.46 The exponential distribution is in exponential form since a(β) = c(β) = 1/ β, b(y) = 1, and 

d(y) = y.  Thus, by Ex. 9.45, ∑=

n

i iY
1

 is sufficient for β, and then so is Y . 
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9.47 We can write the density function as ]ln)1(exp[)|( yyf −α−αθ=α α .  Thus, the density 

has exponential form and the sufficient statistic is ( )
1
ln

n

i
i

Y
=
∑ .  Since this is equivalently 

expressed as ( )∏ =

n

i iY
1

ln ,  we have no contradiction with Ex. 9.43. 
 
9.48 We can write the density function as ]ln)1(exp[)|( yyf +α−αβ=α α .  Thus, the density 

has exponential form and the sufficient statistic is ∑=

n

i iY
1
ln .  Since this is equivalently 

expressed as ∏=

n

i iY
1

ln ,  we have no contradiction with Ex. 9.44. 
 

9.49 The density for the uniform distribution on (0, θ) is 
θ

=θ
1)|( yf , 0 ≤ y ≤ θ.  For this 

problem and several of the following problems, we will use an indicator function to 
specify the support of y.  This is given by, in general, for a < b, 

⎩
⎨
⎧ ≤≤

=
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if1
)(,

bya
yI ba . 

Thus, the previously mentioned uniform distribution can be expressed as 

)(1)|( ,0 yIyf θθ
=θ . 

The likelihood function is given by )(1)(1)( )(,01 ,0 nn

n

i in yIyIL θ= θ θ
=

θ
=θ ∏ , since 

)()( )(,01 ,0 n
n

i i yIyI θ= θ =∏ .  Therefore, Theorem 9.4 is satisfied with h(y) = 1 and 

)(1),( )(,0)( nnn yIyg θθ
=θ . 

(This problem could also be solved using the conditional distribution definition of 
sufficiency.) 
 

9.50 As in Ex. 9.49, we will define the uniform distribution on the interval (θ1, θ2) as 

)(
)(

1),|(
21,

12
21 yIyf θθθ−θ
=θθ . 

The likelihood function, using the same logic as in Ex. 9.49, is 
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21 212121 nn
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So, Theorem 9.4 is satisfied with )()(
)(

1),,,( )(,)1(,
12

21)()1( 2121 nnn yIyIyyg θθθθθ−θ
=θθ  and 

h(y) = 1. 
 

9.51 Again, using the indicator notation, the density is 
)()](exp[)|( , yIyyf a ∞θ−−=θ  

(it should be obvious that y < ∞ for the indicator function).  The likelihood function is  
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Theorem 9.4 is satisfied with ( ) )(exp),( )1(,)1( yInyg a ∞θ=θ  and ( )∑ =
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9.52 Again, using the indicator notation, the density is 
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The likelihood function is )(
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9.53 Again, using the indicator notation, the density is 
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The likelihood function is ( ) ( ) )(2)(2)( )1(,1
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9.54 Again, using the indicator notation, the density is 

)(),|( ,0
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The likelihood function is  
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 is jointly sufficient for α and θ. 
 

9.55 Lastly, using the indicator notation, the density is 
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The likelihood function is  
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9.56 In Ex. 9.38 (b), it was shown that ∑=
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2)(  is sufficient for σ2.  Since the quantity 

∑=
μ−=σ

n

i in y
1

212 )(ˆ  is unbiased and a function of the sufficient statistic, it is the MVUE 
of σ2. 
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9.57 Note that the estimator can be written as 

2
ˆ

22
2 YX SS +
=σ , 

where ∑=− −=
n

i inX XXS
1

2
1

12 )( , ∑=− −=
n

i inY YYS
1

2
1

12 )( .  Since both of these estimators 

are the MVUE (see Example 9.8) for σ2 and E( 2σ̂ ) = σ2, 2σ̂  is the MVUE for σ2. 
 

9.58 From Ex. 9.34 and 9.40, ∑=

n

i iY
1

2  is sufficient for θ and E(Y2) = θ.  Thus, the MVUE is 

∑=
=θ

n

i in Y
1

21ˆ . 
 
9.59 Note that E(C) = E(3Y2) = 3E(Y2) = 3[V(Y) + (E(Y))2] = 3(λ + λ2).  Now, from Ex. 9.39, it 

was determined that ∑=

n

i iY
1

 is sufficient for λ, so if an estimator can be found that is 
unbiased for 3(λ + λ2) and a function of the sufficient statistic, it is the MVUE.  Note that 

∑=

n

i iY
1

 is Poisson with parameter nλ, so  
222 )]([)()( λ+=+= λ

nYEYVYE , and 
nnYE /)/( λ= . 

Thus λ2 = )/()( 2 nYEYE −  so that the MVUE for 3(λ + λ2) is 
[ ] ( )[ ]nYYYnYY 122 13/3 −+=+− . 

 
9.60 a. The density can be expressed as ]ln)1exp[()|( yyf −θθ=θ .  Thus, the density has 

exponential form and ∑=
−

n

i iy
1
ln  is sufficient for θ. 

 
b. Let W = –lnY.  The distribution function for W is  

wew
W edyyeYPwYPwWPwF

w
θ−−θ− −=θ−=≤−=≤−=≤= ∫

−

11)(1)ln()()(
0

1 , w > 0. 

This is the exponential distribution function with mean 1/θ. 
 
c. For the transformation U = 2θW, the distribution function for U is 

2/
22 1)()()2()()( uu

W
u

U eFWPuWPuUPuF −
θθ −==≤=≤θ=≤= , u > 0. 

Note that this is the exponential distribution with mean 2, but this is equivalent to the 
chi–square distribution with 2 degrees of freedom.  Therefore, by property of independent 
chi–square variables, ∑=

θ
n

i iW
1

2  is chi–square with 2n degrees of freedom. 
 
d. From Ex. 4.112, the expression for the expected value of the reciprocal of a chi–square 

variable is given.  Thus, it follows that ( )
)1(2

1
22

12
1

1 −
=

−
=⎥⎦

⎤
⎢⎣
⎡ θ

−

=∑ nn
WE n

i i . 

 

e. From part d, 
∑∑ ==

−

−
=

−
n

i i
n

i i Y
n

W
n

11
ln
11  is unbiased and thus the MVUE for θ. 
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9.61 It has been shown that Y(n) is sufficient for θ and E(Y(n)) = ( )θ+1n

n .  Thus, ( ) )(
1

nn
n Y+  is the 

MVUE for θ. 
 

9.62 Calculate n
nuyn dueundynyeYE 1

0

)(
)1( )()( +θ=θ+== ∫∫

∞
−

∞

θ

θ−− .  Thus, Y(1) – n
1  is the MVUE 

for θ. 
 
9.63 a. The distribution function for Y is 33 /)( θ= yyF , 0 ≤ y ≤ θ.  So, the density function for 

Y(n) is nnn
n nyyfyFnyf 3131

)( /3)()]([)( θ== −− , 0 ≤ y ≤ θ. 
 

b. From part a, it can be shown that E(Y(n)) = θ+13
3
n
n .  Since Y(n) is sufficient for θ, n

n
3

13 + Y(n) 
is the MVUE for θ. 
 

9.64 a. From Ex. 9.38, Y  is sufficient for μ.  Also, since σ = 1, Y  has a normal distribution 
with mean μ and variance 1/n.  Thus, 222 /1)]([)()( μ+=+= nYEYVYE .  Therefore, the 
MVUE for μ2 is nY /12 − . 

 
b. V( nY /12 − ) = V( 2Y ) = E( 4Y ) – [E( 2Y )]2 = E( 4Y ) – [1/n + μ2]2.  It can be shown that 
E( 4Y ) = 463 2

2 μ++ μ
nn

 (the mgf for Y  can be used) so that  

V( nY /12 − ) = 463 2

2 μ++ μ
nn

 – – [1/n + μ2]2 = 22 /)42( nnμ+ . 
 

9.65 a. )1()0()1()0,1()1()( 2121 ppYPYPYYPTPTE −========= . 

b. 
)(

)1,0,1(
)(

),0,1()|1( 32121
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n
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=

−===
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w
n

pp
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⎞
⎜⎜
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⎛

−⎟⎟
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−
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1
2
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321  

 = 
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−
−
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wnw . 

c. ⎟
⎠
⎞

⎜
⎝
⎛ −⎟

⎠
⎞

⎜
⎝
⎛

−
=⎟

⎠
⎞

⎜
⎝
⎛

−
−

===
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W
n

W
n

n
n

Wn
n

WWTPWTE 1
11

)|1()|( .  Since T is unbiased by 

part (a) above and W is sufficient for p and so also for p(1 – p), )1/()1( −− nYYn  is the 
MVUE for p(1 – p). 
 

9.66 a. i. The ratio of the likelihoods is given by 
ii

ii

ii

ii

ii
yx
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xx

yny

xnx

p
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  ii. If ii yx Σ=Σ , the ratio is 1 and free of p.  Otherwise, it will not be free of p. 

iii. From the above, it must be that ∑=
=

n

i in YYYg
11 ),,( …  is the minimal sufficient 

statistic for p.  This is the same as in Example 9.6. 
 

b.  i. The ratio of the likelihoods is given by 

( )⎥⎦
⎤

⎢⎣
⎡ −

θ
−=

θ−θ

θ−θ
=

θ
θ ∑∑

∏
∏

∏ ∑
∏ ∑

==

=

=

= =
−

= =
−

n

i i
n

i in

i i

n

i i
n

i

n

i i
n

i
n

n

i

n

i i
n

i
n

yx
y

x

yy

xx
L
L

1
2

1
2

1

1

1 1
2

1 1
2 1exp

)/exp()(2

)/exp()(2
)|(
)|(

y
x  

 
ii. The above likelihood ratio will only be free of θ if ∑∑ ==

=
n

i i
n

i i yx
1

2
1

2 , so that 

∑=

n

i iY
1

2  is a minimal sufficient statistic for θ. 
 

9.67 The likelihood is given by 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

σ

μ−
−

σπ
=σμ ∑=

2
1

2

2/
2

2
)(

exp
)2(
1),|(

n

i i
nn

y
L y . 

The ratio of the likelihoods is 

[ ] =
⎭
⎬
⎫

⎩
⎨
⎧ μ−−μ−

σ
−=

σμ
σμ ∑∑ ==

n

i i
n

i i yx
L
L

1
2

1
2

22

2

)()(
2

1exp
),|(
),|(

y
x  

            ( )[ ]
⎭
⎬
⎫

⎩
⎨
⎧ −μ−−

σ
− ∑ ∑ ∑∑= = ==

n

i

n

i

n

i ii
n

i ii yxyx
1 1 11

22
2 2

2
1exp . 

 
This ratio is free of (μ, σ2) only if both ∑∑ ==

=
n

i i
n

i i yx
1

2
1

2  and ∑∑ ==
=

n

i i
n

i i yx
11

, so 

∑=

n

i iY
1

 and ∑=

n

i iY
1

2  form jointly minimal sufficient statistics for μ and σ2. 
 
 

9.68 For unbiased estimators g1(U) and g2(U), whose values only depend on the data through 
the sufficient statistic U, we have that E[g1(U) – g2(U)] = 0.  Since the density for U is 
complete, g1(U) – g2(U) ≡ 0 by definition so that g1(U) = g2(U).  Therefore, there is only 
one unbiased estimator for θ based on U, and it must also be the MVUE. 

  
9.69 It is easy to show that μ = 2

1
+θ
+θ  so that μ−

−μ=θ 1
12 .  Thus, the MOM estimator is Y

Y
−
−=θ 1
12ˆ .  

Since Y  is a consistent estimator of μ, by the Law of Large Numbers θ̂  converges in 
probability to θ.  However, this estimator is not a function of the sufficient statistic so it 
can’t be the MVUE. 

 
9.70 Since μ = λ, the MOM estimator of λ is .ˆ

1 Ym =′=λ  
 
9.71 Since E(Y) = 1μ′  = 0 and E(Y2) = 2μ′  = V(Y) = σ2, we have that .ˆ

1
21

2
2 ∑=

=′=σ
n

i in Ym  
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9.72 Here, we have that 1μ′  = μ and 2μ′  = σ2 + μ2.  Thus, Ym =′=μ 1ˆ  and 2

2
2ˆ Ym −′=σ  = 

.)(2

1
212

1
21 ∑∑ ==

−=−
i in

n

i in YYYY  
 
9.73 Note that our sole observation Y is hypergeometric such that E(Y) = nθ/N.  Thus, the 

MOM estimator of θ is nNY /ˆ =θ . 
 

9.74 a. First, calculate 1μ′  = E(Y) = dyyy∫
θ

θ−θ
0

2/)(2  = θ/3.  Thus, the MOM estimator of θ is 

.3ˆ Y=θ  
 

b. The likelihood is )(2)(
1

2
i

n

i
nn yL ∏=

− −θθ=θ .  Clearly, the likelihood can’t be factored 

into a function that only depends on Y , so the MOM is not a sufficient statistic for θ. 
 
 

9.75 The density given is a beta density with α = β = θ.  Thus, 1μ′  = E(Y) = .5.  Since this 
doesn’t depend on θ, we turn to )12(2

12
2 )( +θ

+θ==μ′ YE  (see Ex. 4.200).  Hence, with 

∑=
=′

n

i in Ym
1

21
2 , the MOM estimator of θ is 14

21
2

2ˆ
−′
′−=θ m

m . 
 
 
9.76 Note that 1μ′  = E(Y) = 1/p.  Thus, the MOM estimator of p is ./1ˆ Yp =  
 
9.77 Here, 1μ′  = E(Y) = θ2

3 .  So, the MOM estimator of θ is .ˆ
3
2 Y=θ  

 
9.78 For Y following the given power family distribution, 

1
3

3

0

3

01

1

33)( +α
α

+α
α−α−α =α=α= ∫

+αydyyYE . 

 Thus, the MOM estimator of θ is Y
Y
−=θ 3

ˆ . 
 
9.79 For Y following the given Pareto distribution,  

)1/()( 1

1

−ααβ=αβ=αβ=
∞

β
+α−

α
∞

β

α−α +α−

∫ ydyyYE . 

The mean is not defined if α < 1.  Thus, a generalized MOM estimator for α cannot be 
expressed. 
 

9.80 a. The MLE is easily found to be .ˆ Y=λ  
b. E( λ̂ ) = λ, V( λ̂ ) = λ/n. 
c. Since λ̂  is unbiased and has a variance that goes to 0 with increasing n, it is consistent. 
d. By the invariance property, the MLE for P(Y = 0) is exp(– λ̂ ). 
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9.81 The MLE is θ̂  = .Y   By the invariance property of MLEs, the MLE of θ2 is .2Y  
 

9.82 The likelihood function is ( ) ( )∑∏ =

−

=
− θ−θ=θ

n

i
r
i

rn

i i
nn yyrL

1

1

1
/exp)( . 

a. By Theorem 9.4, a sufficient statistic for θ is ∑=

n

i
r

iY
1

. 
b. The log–likelihood is 

( ) ∑∏ ==
θ−−++θ−=θ

n

i
r
i

n

i i yyrrnnL
11

/ln)1(lnln)(ln . 

By taking a derivative w.r.t. θ and equating to 0, we find ∑=
=θ

n

i
r

in Y
1

1ˆ . 

c. Note that θ̂  is a function of the sufficient statistic.  Since it is easily shown that 
θ=)( rYE , θ̂  is then unbiased and the MVUE for θ. 

 
9.83 a. The likelihood function is nL −+θ=θ )12()( .  Let γ = γ(θ)= 2θ + 1.  Then, the 

likelihood can be expressed as nL −γ=γ)( .  The likelihood is maximized for small values 
of γ.  The smallest value that can safely maximize the likelihood (see Example 9.16) 
without violating the support is .ˆ )(nY=γ   Thus, by the invariance property of MLEs,  

( )1ˆ
)(2

1 −=θ nY . 

b. Since V(Y) = 12
)12( 2+θ .  By the invariance principle, the MLE is ( ) .12/2

)(nY  
 

9.84 This exercise is a special case of Ex. 9.85, so we will refer to those results. 
a. The MLE is 2/ˆ Y=θ , so the maximum likelihood estimate is 2/y  = 63. 
b. E( θ̂ ) = θ, V( θ̂ ) = V( 2/Y ) = θ2/6. 

c. The bound on the error of estimation is 6/)130(2)ˆ(2 2=θV  = 106.14. 

d. Note that V(Y) = 2θ2 = 2(130)2.  Thus, the MLE for V(Y) = 2)ˆ(2 θ . 
 
9.85 a. For α > 0 known the likelihood function is  

( ) ( )∑∏ =

−α

=α θ−
θαΓ

=θ
n

i i
n

i inn yyL
1

1

1
/exp

)]([
1)( . 

 The log–likelihood is then 
( ) ∑∏ ==

θ−−α+θα−αΓ−=θ
n

i i
n

i i yynnL
11

/ln)1(ln)](ln[)(ln  
 so that 

∑=θ θ+θα−=θ
n

i id
d ynL

1
2//)(ln . 

 Equating this to 0 and solving for θ, we find the MLE of θ to be 
YYn

i in α=α ==θ ∑ 1
1

1ˆ . 
 

 b. Since E(Y) = αθ and V(Y) = αθ2, E( θ̂ ) = θ, V( θ̂ ) = )/(2 αθ n . 
 
 c. Since Y  is a consistent estimator of μ = αθ, it is clear that θ̂  must be consistent for θ. 
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d. From the likelihood function, it is seen from Theorem 9.4 that U = ∑=

n

i iY
1

 is a 
sufficient statistic for θ.  Since the gamma distribution is in the exponential family of 
distributions, U is also the minimal sufficient statistic. 

 
e. Note that U has a gamma distribution with shape parameter nα and scale parameter θ. 
The distribution of 2U/θ is chi–square with 2nα degrees of freedom.  With n = 5, α = 2, 
2U/θ is chi–square with 20 degrees of freedom.  So, with 2

95.χ  = 10.8508, 2
05.χ  = 31.4104, 

a 90% CI for θ is ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ ∑∑ ==

8508.10
2

,
4104.31

2
11

n

i i
n

i i YY
. 

 
9.86 First, similar to Example 9.15, the MLEs of μ1 and μ2 are X=μ1ˆ  and Y=μ2ˆ .  To 

estimate σ2, the likelihood is 

⎪⎭

⎪
⎬
⎫
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⎪
⎨
⎧

⎥
⎥
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⎠
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i
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nmnm

yxL
1 1

2
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2
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2
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2/)(
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)2(
1)( . 

The log–likelihood is 
( ) ( )[ ]∑ ∑= =σ

μ−−μ−−σ+−=σ
m

i

n

i ii yxnmKL
1 1

2
2

2
12

12
2ln)()(ln  

By differentiating and setting this quantity equal to 0, we obtain 
( ) ( )

nm
yxm

i

n

i ii

+

μ−−μ−
=σ ∑ ∑= =1 1

2
2

2
12ˆ . 

As in Example 9.15, the MLEs of μ1 and μ2 can be used in the above to arrive at the MLE 
for σ2: 

( ) ( )
nm

YYXXm

i

n

i ii

+

−−−
=σ ∑ ∑= =1 1

22

2ˆ . 

 
9.87 Let Y1 = # of candidates favoring candidate A, Y2 = # of candidate favoring candidate B, 

and Y3 = # of candidates favoring candidate C.  Then, (Y1, Y2, Y3) is trinomial with 
parameters (p1, p2, p3) and sample size n.  Thus, the likelihood L(p1, p2) is simply the 
probability mass function for the trinomial (recall that (p3 = 1– p1 – p2): 

321

321
)1(),( 2121!!!

!
21

yyy
nnn

n ppppppL −−=  
This can easily be jointly maximized with respect to p1 and p2 to obtain the MLEs 

nYp /ˆ 11 = , nYp /ˆ 22 = , and so nYp /ˆ 33 = . 
 
For the given data, we have 1p̂  = .30, 2p̂  = .38, and 3p̂  = .32.  Thus, the point estimate 
of p1 – p2 is .30 – .38 = –.08.  From Theorem 5.13, we have that V(Yi) = npiqi and 
Cov(Yi,Yj) = – npipj.  A two–standard–deviation error bound can be found by 

nppnqpnqpppCovpVpVppV /2//2)ˆ,ˆ(2)ˆ()ˆ(2)ˆˆ(2 212211212121 ++=−+=− . 
This can be estimated by using the MLEs found above.  By plugging in the estimates, 
error bound of .1641 is obtained. 
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9.88 The likelihood function is ( )θ
=∏+θ=θ

n

i i
n yL

1
)1()( .  The MLE is ∑=

−=θ
n

i iYn
1
ln/ˆ .  This 

is a different estimator that the MOM estimator from Ex. 9.69, however note that the 
MLE is a function of the sufficient statistic. 

 
9.89 Note that the likelihood is simply the mass function for Y: ( ) yy

y pppL −−= 22 )1()( .  By 
the ML criteria, we choose the value of p that maximizes the likelihood.  If Y = 0, L(p) is 
maximized at p = .25.  If Y = 2, L(p) is maximized at p = .75.  But, if Y = 1, L(p) has the 
same value at both p = .25 and p = .75; that is, L(.25) = L(.75) for y = 1.  Thus, for this 
instance the MLE is not unique. 

 
9.90 Under the hypothesis that pW = pM = p, then Y = # of people in the sample who favor the 

issue is binomial with success probability p and n = 200.  Thus, by Example 9.14, the 
MLE for p is nYp /ˆ =  and the sample estimate is 55/200. 

 
9.91 Refer to Ex. 9.83 and Example 9.16.  Let γ = 2θ.  Then, the MLE for γ is )(ˆ nY=γ  and by 

the invariance principle the MLE for θ is 2/ˆ
)(nY=θ . 

 
9.92 a. Following the hint, the MLE of θ is )(

ˆ
nY=θ . 

 
b. From Ex. 9.63, nn

n nyyf 313
)( /3)( θ= − , 0 ≤ y ≤ θ.  The distribution of T = Y(n)/θ is 

133)( −= n
T nttf , 0 ≤ t ≤ 1. 

Since this distribution doesn’t depend on θ, T is a pivotal quantity. 
 
c. (Similar to Ex. 8.132) Constants a and b can be found to satisfy P(a < T < b) = 1 – α 
such that P(T < a) = P(T > b) = α/2.  Using the density function from part b, these are 
given by )3/(1)2/( na α=  and )3/(1)2/1( nb α−= .  So, we have 

1 – α = P(a < Y(n)/θ < b) = ( )aYbYP nn // )()( <θ< . 

Thus, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
αα− )3/(1

)(
)3/(1

)(

)2/(
,

)2/1( n
n

n
n YY

 is a (1 – α)100% CI for θ. 

 
9.93 a. Following the hint, the MLE for θ is )1(

ˆ Y=θ . 
 

b. Since F(y | θ) = 1 – 2θ2y–2, the density function for Y(1) is easily found to be  
)12(2

)1( 2)( +−θ= nn ynyg , y > θ. 
If we consider the distribution of T = θ/Y(1), the density function of T can be found to be 

122)( −= n
T nttf , 0 < t < 1. 

 
c. (Similar to Ex. 9.92) Constants a and b can be found to satisfy P(a < T < b) = 1 – α 
such that P(T < a) = P(T > b) = α/2.  Using the density function from part b, these are 
given by )2/(1)2/( na α=  and )2/(1)2/1( nb α−= .  So, we have 
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1 – α = P(a < θ/Y(1) < b) = ( ))1()1( bYaYP <θ< . 

Thus, [ ])1(
)2/(1

)1(
)2/(1 )2/1(,)2/( YY nn α−α  is a (1 – α)100% CI for θ. 

 
 

9.94 Let β = t(θ) so that θ = )(1 β−t .  If the likelihood is maximized at θ̂ , then L( θ̂ ) ≥ L(θ) for 
all θ.  Define β̂  = t( θ̂ ) and denote the likelihood as a function of β as L1(β) = L( )(1 β−t ).  
Then, for any β, 

)ˆ())ˆ(()ˆ()())(()( 1
11

1 β=β=θ≤θ=β=β −− LtLLLtLL . 
So, the MLE of β is β̂  and so the MLE of t(θ) is t( θ̂ ). 
 

9.95 The quantity to be estimated is R = p/(1 – p).  Since nYp /ˆ =  is the MLE of p, by the 
invariance principle the MLE for R is ).ˆ1/(ˆˆ ppR −=  

 
9.96 From Ex. 9.15, the MLE for σ2 was found to be ∑=

−=σ
n

i in YY
1

212 )(ˆ .  By the invariance 

property, the MLE for σ is ∑=
−=σ=σ

n

i in YY
1

212 )(ˆˆ . 

 
9.97 a. Since p/11 =μ′ , the MOM estimator for p is ./1/1ˆ 1 Ymp =′=  
 

b. The likelihood function is nyn ipppL −Σ−= )1()(  and the log–likelihood is  

)1ln()(ln)(ln
1

pnypnpL n

i i −−+= ∑ =
. 

Differentiating, we have 
)()(ln

11
1 ∑=− −−=

n

i ipp
n

dp
d nypL . 

Equating this to 0 and solving for p, we obtain the MLE ,/1ˆ Yp =  which is the same as 
the MOM estimator found in part a. 
 
 

9.98 Since )1ln()1(ln)|(ln pyppyp −−+= ,  
)1/()1(/1)|(ln pyppypdp

d −−−=  
22 )1/()1(/1)|(ln2

2 pyppyp
dp
d −−−−= . 

 Then, 

  [ ] [ ]
)1(

1)1/()1(/1)|(ln 2
22

2

2

pp
pYpEpYpE

dp
d

−
=−−−−−=− . 

 
Therefore, the approximate (limiting) variance of the MLE (as given in Ex. 9.97) is given 
by 

n
pppV )1()ˆ(

2 −
≈ . 
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9.99 From Ex. 9.18, the MLE for t(p) = p is nYp /ˆ =  and with [ ] )1(

1)|(ln2

2

ppdp
d pYpE −=− , a 

100(1 – α)% CI for p is n
ppzp )ˆ1(ˆ

2/ˆ −
α± .  This is the same CI for p derived in Section 8.6. 

 
9.100 In Ex. 9.81, it was shown that 2Y  is the MLE of t(θ) = θ2.  It is easily found that for the 

exponential distribution with mean θ, 

[ ] 2

1)|(ln2

2

θ
=θ− YfE

dp
d . 

Thus, since θ=θθ 2)(td
d , we have an approximate (large sample) 100(1 – α)% CI for θ as 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
±=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ θ
± α

θ=θθ

α n
YzY

n
zY

2

2/
2

ˆ
1

2

2/
2 2)2(

2

. 

 
9.101 From Ex. 9.80, the MLE for t(λ) = exp(–λ) is t( λ̂ ) = exp(– λ̂ ) = exp(–Y ).  It is easily 

found that for the Poisson distribution with mean λ, 

[ ]
λ

=λ−
1)|(ln2

2 YpE
dp
d . 

Thus, since )exp()( λ−−=λλ td
d ,  we have an approximate 100(1 – α)% CI for λ as  

n
YYzY

n
zY

Y

)2exp()exp()2exp()exp( 2/12/
−

±−=
λ−

±− α

=λλ
α . 

 
9.102 With n = 30 and y  = 4.4, the maximum likelihood estimate of p is 1/(4.4) = .2273 and an 

approximate 90% CI for p is 

30
)7727(.)2273(.96.12273.)ˆ1(ˆˆ

22

025. ±=
−

±
n

ppzp  = .2273 ± .0715 or (.1558, .2988). 

 
9.103 The Rayleigh distribution is a special case of the (Weibull) distribution from Ex. 9.82.  

Also see Example 9.7 
a. From Ex. 9.82 with r = 2, ∑=

=θ
n

i in Y
1

21 .ˆ  
b. It is easily found that for the Rayleigh distribution with parameter θ, 

3

2

2
21)|(ln2

2

θ
−

θ
=θ

YYf
dp
d . 

Since E(Y2) = θ, [ ] 2

1)|(ln2

2

θ
=θ− YfE

dp
d  and so V( θ̂ ) ≈ θ2/n. 

 
9.104 a. MOM: 1)(1 +θ==μ′ YE , so 11ˆ

11 −=−′=θ Ym . 
 

b. MLE: )1(2
ˆ Y=θ , the first order statistic. 



198                                                                      Chapter 9: Properties of Point Estimators and Methods of Estimation 
Instructor’s Solutions Manual 
 

c. The estimator 1θ̂  is unbiased since E( 1θ̂ ) = E(Y ) – 1 = θ + 1 – 1 = θ.  The distribution 
of Y(1) is )(

)1( )( θ−−= ynneyg , y > θ.  So, E(Y(1)) = E( 2θ̂ ) = θ+n
1 .  Thus, 2θ̂  is not unbiased 

but nY 1
)1(

*
2

ˆ −=θ  is unbiased for θ. 

The efficiency of 1ˆ
1 −=θ Y  relative to nY 1

)1(
*
2

ˆ −=θ  is given by 

n
n

nn

YV
YV

YV
YV

V
V 1

1

1
)1(

1
)1(

1

*
2*

21
2

)(
)(

)1(
)(

)ˆ(
)ˆ()ˆ,ˆ(eff ===

−

−
=

θ
θ

=θθ . 

 
9.105 From Ex. 9.38, we must solve 

n
yyn

d
Ld ii

2

4

2

22

2 )(2
2

)(
2

ln ˆso,0 μ−Σ

σ

μ−Σ

σ
−

σ
=σ=+= . 

 
9.106 Following the method used in Ex. 9.65, construct the random variable T such that 

T = 1 if Y1 = 0 and T = 0 otherwise 
Then, E(T) = P(T = 1) = P(Y1 = 0) = exp(–λ).  So, T is unbiased for exp(–λ).  Now, we 
know that W = ∑=

n

i iY
1

 is sufficient for λ, and so it is also sufficient for exp(–λ).  
Recalling that W has a Poisson distribution with mean nλ, 

  
)(

),0()|0()|1()|( 1
1 wWP

wWYPwWYPwWTPwWTE
=

==
========  

=
( ) ( ) ( )wn

w
nn

w
nnn

i i
w

w

e
ee

wWP
wYPYP

1

!
)(

!
])1[()1(

21 1
)(

)0(
−==

=

==
λλ−

λ−λ−−λ−
=∑ . 

Thus, the MVUE is ( ) iY
n

Σ− 11 .  Note that in the above we used the result that ∑=

n

i iY
2

 is 
Poisson with mean (n–1)λ. 

 
9.107 The MLE of θ is .ˆ Y=θ   By the invariance principle for MLEs, the MLE of )(tF  is 

)./exp()(ˆ YttF −=  
 
9.108 a. E(V) = P(Y1 > t) = 1 – F(t) = exp(–t/θ).  Thus, V is unbiased for exp(–t/θ). 
 

b. Recall that U has a gamma distribution with shape parameter n and scale parameter θ.  
Also, U – Y1 =∑=

n

i iY
2

 is gamma with shape parameter n – 1 and scale parameter θ, and 
since Y1 and U – Y1 are independent, 
 

( ) θ−−−
θ−Γ

θ−
θ −=− −

/)(2
1)1(

1/1
11

1
1

1 )(),( yun
n

y eyueyuyf n , 0 ≤ y1 ≤ u < ∞. 

Next, apply the transformation z = u – y1 such that u = z + y1 to get the joint distribution 
θ−−

θ−Γ
−= /2

1)1(
1

1 )(),( un
n

eyuuyf n , 0 ≤ y1 ≤ u < ∞. 

Now, we have 
2

11
1

1 )(1
)(

),()|( −
− −⎟
⎠
⎞

⎜
⎝
⎛ −

== n
n yu

u
n

uf
uyfuyf , 0 ≤ y1 ≤ u < ∞. 
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c. 1

2
1

1
2

111 11)(1)|()|( dy
u
y

u
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nuUtYPUVE
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So, the MVUE is 
1
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−

⎟
⎠
⎞

⎜
⎝
⎛ −

n

U
t . 

 
9.109 Let Y1, Y2, …, Yn represent the (independent) values drawn on each of the n draws.  Then, 

the probability mass function for each Yi is 
P(Yi = k) = N

1 , k = 1, 2, …, N. 
 
a. Since 2

1
2

)1(
1

1
11 )()( ++

==
======μ′ ∑∑ N

N
NNN

k N
N

k
kkYkPYE , the MOM estimator of N 

is YN =+
2

1ˆ
1  or 12ˆ

1 −= YN . 
 

b. First, ( ) NYENE N =−=−= + 121)(2)ˆ( 2
1

1 , so 1N̂  is unbiased.  Now, since 

6
)12)(1(

6
)12)(1(1

1
22 )( ++++

=
===∑ NN

N
NNN

N
N

k
kYE , we have that V(Y) = 12

)1)(1( −+ NN .  Thus, 

( ) n
N

n
NNYVNV 3

1
12

)1)(1(
1

24)(4)ˆ( −−+ === . 
  

9.110 a. Following Ex. 9.109, the likelihood is  
)(}),,2,1{()( )(

1
1

1 NyINyINL nN

n

i iN nn ≤=∈= ∏=
… . 

In order to maximize L, N should be chosen as small as possible subject to the constraint 
that y(n) ≤ N.  Thus )(2

ˆ
nYN = . 

 
b. Since ( )nN

k
nn kYPkYPkYPkNP =≤≤=≤=≤ )()()()ˆ( 1)(2 " , so ( )nN

kkNP 1
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Consider ∑ =
−++++=−
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k
nnnnn Nk

1
)1(210)1( … .  For large N, this is approximately 

the area beneath the curve f (x) = xn from x = 0 to x = N, or .)1( 1
0

1
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n ndxxk  
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n YNN ++ ==  is approximately 
unbiased for N. 
 
c. )ˆ( 2NV  is given, so ( ) )2(2
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d. Note that, for n > 1, 
( )22

2

3

1 1
3

2)1(
3

)2(
)ˆ(
)ˆ( 1

N
n

N
N

n
nn

NV
NV −== +−+  > 1,  

since for large N, ( ) 11 2
1 ≈−

N
 

 
9.111 The (approximately) unbiased estimate of N is 252)210(ˆ

5
6

)(
1

3 === +
nn

n YN  and an 
approximate error bound is given by 

)7(5
)252(

)2(3

22 22)ˆ(2 ≈≈ +nn
NNV  = 85.192. 

 

9.112 a. (Refer to Section 9.3.) By the Central Limit Theorem, 
n

Y
/λ
λ−  converges to a standard 

normal variable.  Also, λ/Y  converges in probability to 1 by the Law of Large Numbers, 
as does λ/Y .  So, the quantity 

λ
λ
λ−

=
/
/

Y
n

Y

Wn  = 
nY

Y
/
λ−  

 
converges to a standard normal distribution. 
 
b. By part a, an approximate (1 – α)100% CI for λ is nYzY /2/α± . 
 


