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Chapter 12: Considerations in Designing Experiments 
 
12.1 (See Example 12.1) Let n1 = ( ) ( )9053

3
21

1
+σ+σ

σ =n  = 33.75 or 34 and n2 = 90 − 34 = 56. 
  
12.2 (See Ex. 12.1).  If n1 = 34 and n2 = 56, then 

7111.56
25

34
9

21
=+=σ −YY  

In order to achieve this same bound with equal sample sizes, we must have 
9
n +

25
n = .7111 

The solution is n = 47.8 or 48.  Thus, it is necessary to have n1 = n2 = 48 so that the 
same amount of information is implied. 
 

12.3 The length of a 95% CI is twice the margin of error: 
2(1.96) 9

n1
+ 25

n2
, 

and this is required to be equal to two.  In Ex. 12.1, we found n1 = (3/8)n and n1 = 
(5/8)n, so substituting these values into the above and equating it to two, the solution is 
found to be n = 245.9.  Thus, n1 = 93 and n2 = 154. 
  

12.4  (Similar to Ex. 12.3) Here, the equation to solve is 
2(1.96) 9

n1
+ 25

n1
 = 2. 

The solution is n1 = 130.6 or 131, and the total sample size required is 131 + 131 = 262. 
 

12.5 Refer to Section 12.2.  The variance of the slope estimate is minimized (maximum 
information) when Sxx is as large as possible.  This occurs when the data are as far away 
from x  as possible.  So, with n = 6, three rats should receive x = 2 units and three rats 
should receive x = 5 units. 

 
12.6 When σ is known, a 95% CI for β is given by 

xxS
z σ

±β α 2/1
ˆ . 

Under the two methods, we calculate that Sxx = 13.5 for Method 1 and Sxx = 6.3 for 
Method 2.  Thus, Method 2 will produce the longer interval.  By computing the ratio of 
the margins of error for the two methods (Method 2 to Method 1), we obtain 3.6

5.13   = 
1.464; thus Method 2 produces an interval that is 1.464 times as large as Method 1. 
 
Under Method 2, suppose we take n measurements at each of the six dose levels.  It is 
not difficult to show that now Sxx = 6.3n.  So, in order for the intervals to be equivalent, 
we must have that 6.3n = 13.5, and so n = 2.14.  So, roughly twice as many observations 
are required. 
 

12.7 Although it was assumed that the response variable Y is truly linear over the range of x, 
the experimenter has no way to verify this using Method 2.  By assigning a few points 
at x = 3.5, the experimenter could check for curvature in the response function. 
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12.8 Checking for true linearity and constant error variance cannot be performed if the data 

points are spread out as far as possible. 
 
12.9 a. Each half of the iron ore sample should be reasonably similar, and assuming the two 

methods are similar, the data pairs should be positively correlated. 
 

b. Either analysis compares means.  However, the paired analysis requires fewer ore 
samples and reduces the sample−to−sample variability. 
 

12.10 The sample statistics are: d  = −.0217, sD
2  = .0008967. 

a. To test H0: μD = 0 vs. Ha: μD ≠ 0, the test statistic is |t| = 
60008967.

0217.−
 = 1.773 with 5 

degrees of freedom.  Since t.025 = 2.571, H0 is not rejected. 
b. From Table 5, .10 < p−value < .20. 
c. The 95% CI is 6

0008967.571.20217. ±−  = −.0217 ± .0314. 
 
12.11 Recall that ( )21

2
2

2
1

1 2)( σρσ+σ+σ= nDVar  given in this section. 
a. This occurs when ρ > 0. 
b. This occurs when ρ = 0. 
c. This occurs when ρ < 0. 
d. If the samples are negatively correlated, a matched−pairs experiment should not be 

performed.  Otherwise, if it is possible, the matched−pairs experiment will have an 
associated variance that is equal or less than the variance associated with the 
independent samples experiment. 

 
12.12 a. There are 2n − 2 degrees of freedom for error. 

b. There are n − 1 degrees of freedom for error. 
c.  

n Independent samples Matched−pairs 
5 d.f. = 8, t.025 = 2.306 d.f. = 4, t.025 = 2.776 
10 d.f. = 18, t.025 = 2.101 d.f. = 9, t.025 = 2.262 
30 d.f. = 58, t.025 = 1.96 d.f. = 29, t.025 = 2.045

 
d. Since more observations are required for the independent samples design, this 
increases the degrees of freedom for error and thus shrinks the critical values used in 
confidence intervals and hypothesis tests. 
 

12.13 A matched−pairs experiment is preferred since there could exist sample−to−sample 
variability when using independent samples (one person could be more prone to plaque 
buildup than another). 

  
12.14 The sample statistics are: d  = −.333, sD

2  = 5.466.  To test H0: μD = 0 vs. Ha: μD < 0, the 
test statistic is t = 

6466.5
333.−  = −.35 with 5 degrees of freedom.  From Table 5, p−value > .1 

so H0 is not rejected. 
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12.15 a. The sample statistics are: d  = 1.5, sD

2  = 2.571.  To test H0: μD = 0 vs. Ha: μD ≠ 0, the 
test statistic is |t| = 

8571.2
5.1  = 2.65 with 7 degrees of freedom.  Since t.025 = 2.365, H0 is 

rejected. 
b. Notice that each technician’s score is similar under both design A and B, but the 
technician’s scores are not similar in general (some are high and some are low).  Thus, 
pairing is important to screen out the variability among technicians. 
c. We assumed that the population of differences follows a normal distribution, and that 
the sample used in the analysis was randomly selected. 
 

12.16 The sample statistics are: d  = −3.88, sD
2  = 8.427. 

a. To test H0: μD = 0 vs. Ha: μD < 0, the test statistic is t = 
15427.8

88.3−  = −5.176 with 14 

degrees of freedom.  From Table 5, it is seen that p−value < .005, so H0 is rejected 
when α = .01. 

b. A 95% CI is 15/427.8145.288.3 ±−  = −3.88 ± 1.608. 
c. Using the Initial Reading data, y  = 36.926 and s2 = 40.889.  A 95% CI for the mean 

muck depth is 15/889.40145.2926.36 ±  = 36.926 ± 3.541. 
d. Using the Later Reading data, y  = 33.046 and s2 = 35.517.  A 95% CI for the mean 

much depth is 15/517.35145.2046.33 ±  = 33.046 ± 3.301. 
e. For parts a and b, we assumed that the population of differences follows a normal 

distribution, and that the sample used in the analysis was randomly selected.  For 
parts c and d, we assumed that the individual samples were randomly selected from 
two normal populations. 

 
12.17 a. iijiiij EUEYE μ=ε++μ= )()()( . 

b. Each Y1j involves the sum of a uniform and a normal random variable, and this 
convolution does not result in a normal random variable. 
c. ),(Cov),(Cov 221121 jjjjjj UUYY ε++με++μ=  = ),(Cov 21 μμ  + ),(Cov jj UU  + 

),(Cov 21 jj εε  = 0 + V(Uj) + 0 = 1/3. 
d. Observe that jjjjj YYD 212121 ε−ε+μ−μ=−= .  Since the random errors are 
independent and follow a normal distribution, Dj is a normal random variable.  Further, 
for j ≠ j′, 0),(Cov =′jj DD  since the two random variables are comprised of constants 
and independent normal variables.  Thus, Dj  and jD ′  are independent (recall that if two 
normal random variables are uncorrelated, they are also independent − but this is not 
true in general). 
 
e. Provided that the distribution of Uj has a mean of zero and finite variance, the result 
will hold. 
 

12.18 Use Table 12 and see Section 12.4 of the text. 
 
12.19 Use Table 12 and see Section 12.4 of the text. 
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12.20 a. There are six treatments.  One example would be the first catalyst and the first 

temperature setting. 
b. After assigning the n experimental units to the treatments, the experimental units are 
numbered from 1 to n.  Then, a random number table is used to select numbers until all 
experimental units have been selected. 
 

12.21 Randomization avoids the possibility of bias introduced by a nonrandom selection of 
sample elements.  Also, it provides a probabilistic basis for the selection of a sample. 

 
12.22 Factors are independent experimental variables that the experimenter can control. 
 
12.23 A treatment is a specific combination of factor levels used in an experiment. 
 
12.24 Yes.  Suppose that a plant biologist is comparing three soil types used for planting, 

where the response is the yield of a crop planted in the different soil types.  Then, “soil 
type” is a factor variable.  But, if the biologist is comparing the yields of different 
greenhouses, but each greenhouse used different soil types, then “soil type” is a 
nuisance variable. 

 
12.25 Increases accuracy of the experiment: 1) selection of treatments, 2) choice of number of 

experimental units assigned to each treatment. 
Decreases the impact of extraneous sources of variability: randomization; assigning 
treatments to experimental units. 

 
12.26 There is a possibility of significant rat−to−rat variation.  By applying all four dosages to 

tissue samples extracted from the same rat, the experimental error is reduced.  This 
design is an example of a randomized block design. 

 
12.27 In the Latin square design, each treatment appears in each row and each column exactly 

once.  So, the design is: 
 
 
 

 
 
12.28 A CI could be constructed for the specific population parameter, and the width of the CI 

gives the quantity of information. 
 
12.29 A random sample of size n is a sample that was randomly selected from all possible 

(unique) samples of size n (constructed of observations from the population of interest) 
and each sample had an equal chance of being selected. 

 
12.30 From Section 12.5, the choice of factor levels and the allocation of the experimental 

units to the treatments, as well as the total number of experimental units being used, 
affect the total quantity of information.  Randomization and blocking can control these 
factors. 

 

B A C
C B A
A C B
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12.31 Given the model proposed in this exercise, we have the following: 

a. iiijiiij EPEYE μ=++μ=ε++μ= 00)()()( . 

b. Obviously, iiYE μ=)( .  Also, [ ] [ ]22111 )()()()( σ+σ=ε+== Pnijinijni VPVYVYV , 
since Pi and εij are independent for all i, j. 

c. From part b, 2121 )()()( μ−μ=−= YEYEDE .  Now, to find V (D ), note that  

[ ]∑∑∑ ===
ε+ε+μ−μ==

n

j j
n

j jn
n

j jn DD
1 21 1

1
211

1 . 

Thus, since the εij are independent, [ ]∑∑ ==
ε+ε=

n

j j
n

j jn
VVDV

1 21 1
1 )()()( 2  = n/2 2σ . 

Further, since D  is a linear combination of normal random variables, it is also 
normally distributed. 
 

12.32 From Exercise 12.31, clearly 
n

D

/2

)(
2

21

σ

μ−μ−
 has a standard normal distribution.  In 

addition, since D1, …, Dn are independent normal random variables with mean μ1 − μ2 
and variance 2σ2, the quantity 

2
1

2

2

2

2

)(

2
)1(

σ

−
=

σ
−

=
∑ =

n

i iD
DDSn

W  

 
is chi−square with ν = n − 1 degrees of freedom.  Therefore, by Definition 7.2 and 
under H0: μ1 − μ2 = 0,  

nS
D

W
Z

D //
=

ν
 

has a t−distribution with n − 1 degrees of freedom. 
 
 

12.33 Using similar methods as in Ex. 12.31, we find that for this model, 
[ ] [ ] 21221

1 2121
1 222)()()()()( 2 σ>σ+σ=ε+ε++= ∑ = nPn

n

j jjjjn
VVPVPVDV . 

Thus, the variance is larger with the completely randomized design, since the unwanted 
variation due to pairing is not eliminated. 
 

12.34 The sample statistics are: d  = −.062727, sD
2  = .012862.   

a. We expect the observations to be positively correlated since (assuming the people 
are honest) jobs that are estimated to take a long time actually take a long time when 
processed.  Similar for jobs that are estimated to take a small amount of processor 
time. 

b. To test H0: μD = 0 vs. Ha: μD < 0, the test statistic is t = 
11012862.

0627272.−  = −1.834 with 10 

degrees of freedom.  Since −t.10 = −1.362, H0 is rejected: there is evidence that the 
customers tend to underestimate the processor time. 

c. From Table 5, we have that .025 < p−value < .05. 
d. A 90% CI for 21 μ−μ=μD , is 11/012862.812.1062727. ±−  = −.063 ± .062 or 

(−.125, −.001). 
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12.35 The sample statistics are: d  = −1.58, sD

2  = .667. 

a. To test H0: μD = 0 vs. Ha: μD ≠ 0, the test statistic is |t| = 1.58
.667 5
−  = 4.326 with 4 

degrees of freedom.  From Table 5, we can see that .01 < p−value < .025, so H0 
would be rejected for any α ≥ .025. 

b. A 95% CI is given by 5/667.776.258.1 ±−  = −1.58 ± 1.014 or (−2.594, −.566). 
c. We will use the estimate of the variance of paired differences.  Also, since the 

required sample will (probably) be large, we will use the critical value from the 
standard normal distribution.  Our requirement is then: 

nn
z D 667.96.12.

2

025. ≈
σ

= . 

The solution is n = 64.059, or 65 observations (pairs) are necessary. 
 

12.36 The sample statistics are: d  = 106.9, sD
2  = 1364.989. 

a. Each subject is presented each sign in random order.  If the subject’s reaction time is 
(in general) high, both responses should be high.  If the subject’s reaction time is (in 
general) low. both responses should be low.  Because of the subject−to−subject 
variability, the matched pairs design can eliminate this extraneous source of 
variation. 

b. To test H0: μD = 0 vs. Ha: μD ≠ 0, the test statistic is |t| = 
10/989.1364

0.106  = 9.15 with 9 
degrees of freedom.  Since t.025 = 2.262, H0 is rejected. 

c. From Table 5, we see that p−value < 2(.005) = .01. 
d. The 95% CI is given by 10/989.1364262.29.106 ±  = 106.9 ± 26.428 or (80.472, 

133.328). 
 
12.37 There are nk1 points at x = −1, nk2 at x = 0, and nk3 points at x = 1.  The design matrix X 

can be expressed as 
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where a = k1 + k3 and b = k3 − k1.   
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Now, the goal is to minimize 22

2
2 )ˆ( cV σ=β , where c22 is the (3, 3) element of (X′X)−1.  

To calculate (X′X)−1, note that it can be expressed as 
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1
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babaa
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n A
A , and (the student should verify) the 

determinant of A simplifies to det(A) = 4k1k2k3.  Hence, 
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We must minimize 
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So, with 
3131

31

1
1

4 kkkk
kk

Q
−−

−
+

= , we can differentiate this with respect to k1 and k3 

and set these equal to zero.  The two equations are: 
 

2
31

2
3

2
31

2
1

)1(4

(*))1(4

kkk

kkk

−−=

−−=
. 

 
Since k1, k2, and k3 are all positive, k1 = k3 by symmetry of the above equations and 
therefore by (*), 2

1
2
1 )21(4 kk −=  so that k1 = k3 = .25.  Thus, k2 = .50. 

 
 
 


