Chapter 9: Properties of Point Estimators and Methods of Estimation

9.1 Refer to Ex. 8.8 where the variances of the four estimators were calculated. Thus,
eff(0,,0,)=1/3 eff(0,,0,)=2/3 eff(0,,0,) = 3/5.

9.2 a. The three estimators a unbiased since:

E(fi,)= H(E(YV) +E(Y,))=t(n+p) =p
X (n-2)u
E =pu/d+——+u/d=
() =p 2n-2) n/4=p
E(i,)=E(Y)=n.
b. The variances of the three estimators are

V(i) =4(c" +0%) =10’

2
V(fi,)=c>/16 + M > /16=c>/8 + —2
4(n—2)? 4(n—2)
V(ii,)=0"/n
n2
Thus, eff((1,,[1,)= ,eff((1, i1,) =n/2.
u (Hy,1,) 8(n—2) (By Q)

9.3 a. E( él y=E(Y )—1/2=0+1/2—-1/2=6. From Section 6.7, we can find the density
function of éz =Ym: 9,(y)=n(y-0)"",0<y<0+ 1. From this, it is easily shown
that E(0,) = E(Y) —n/(n+ 1) = .
b. V(8,)=V(Y ) =c%n=1/(12n). With the density in part &, V(8,) = V(Yn) =

. n_
(n+2)(n+1)? *

Thus, eff( 6, ,0,) = —12

(n+2)(n+1)* °

9.4 See Exercises 8.18 and 6.74. Following those, we have that V( é1 )=(n+ 1)2V(Y(n)) =
1202, Similarly, V(6,) = (&L V(Yn) =

as given.

n(m) —1_9”. Thus, the ratio of these variances is

9.5  From Ex. 7.20, we know S is unbiased and V(S%) = V(67) = 22, For 62, note that Y, —

Y, Y.
Y, is normal with mean 0 and variance o’ So, ( R 2)

freedom and E(62) = 6%, V(62) = 26", Thus, we have that eff(6;,63)=n— 1.

is chi—square with one degree of

9.6 Both estimators are unbiased and V(?AL1 )=MN2 and V( A ,) =Mn. The efficiency is 2/n.

9.7  The estimator él is unbiased so MSE( él ) =V( él) =0°. Also, éz =Y is unbiased for 0
(0 is the mean) and V(0,) = */n = 6%/n. Thus, we have that eff(6,,6,) = 1/n.
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9.8

9.9

9.10

9.11

9.12

9.13

9.14

9.15

9.16

9.17

9.18

9.19

a. It is not difficult to show that % = -2, 50 I(w) = o”/n, Since V(Y )=c’/n, ¥ is

an efficient estimator of .

b. Similarly, % =—% and E(-Y/A%) = I/L. Thus, I()) =M/n. By Ex. 9.6, Y isan

efficient estimator of A.

a. Xe=1.
b.-e. Answers vary.

a.-b. Answers vary.

a.-b. Answers vary.
c. The simulations are different but get close at n = 50.

a.-b. Answers vary.

a. Sequences are different but settle down at large n.
b. Sequences are different but settle down at large n.

a. the mean, 0.
b.-c. the variability of the estimator decreases with n.

Referring to Ex. 9.3, since both estimators are unbiased and the variances go to 0 with as
n goes to infinity the estimators are consistent.

From Ex. 9.5, V(62) = 26" which is constant for all n. Thus, &2 is not a consistent
estimator.

In Example 9.2, it was shown that both X and Y are consistent estimators of p; and .,
respectively. Using Theorem 9.2, X — Y 1is a consistent estimator of p; — ;.

Note that this estimator is the pooled sample variance estimator Sf) withn;=n,=n. In
Ex. 8.133 it was shown that Sﬁ 1s an unbiased estimator. Also, it was shown that the
26" o’

n+n,-2 n-1

variance of Sz is . Since this quantity goes to 0 with n, the estimator

is consistent.

Given f(y), we have that E(Y) = 3% and V(Y) = m (Y has a beta distribution with
parameters o.= 0 and B = 1. Thus, E(Y )= +% and V(Y ) = m Thus, the

conditions are satisfied for Y to be a consistent estimator.
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9.20

9.21

9.22

9.23
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Since E(Y) = np and V(Y) = npg, we have that E(Y/n) = p and V(Y/n) = pg/n. Thus, Y/n is
consistent since it is unbiased and its variance goes to 0 with n.

Note that this is a generalization of Ex. 9.5. The estimator &° can be written as
&2 :l (Yz _Y1)2 n (Y4 _Y3)2 n (Y6 _Y5)2 R (Yn _Yn—l)z .
k 2 2 2 2
There are k independent terms in the sum, each with mean o” and variance 2¢".

a. From the above, E(6%) = (ko’)/k =°. So &7 is an unbiased estimator.
b. Similarly, V(%) = k(26*)/k> = 26*/k. Since k =n/2, V(&%) goes to 0 with n and &7 is
a consistent estimator.

Following Ex. 9.21, we have that the estimator A can be written as
xzi[m SO AU\ A\ A i

k 2 2 2 ’ 2
For Y, Yi_1, we have that:
ELY, —Yi)’]_ B = 2E(YDE(Y ) +E(Y) _ (A +2) =20 + (L +2)
2 - 2 B 2
VI(Y, =Y, ,)*] g VY2 +V(Y2) 201202 + 83
4 4 4

independent and non—negative (the calculation can be performed using the
Poisson mgf).

=\

=v, since Yjand Y; ;| are

a. From the above, E(A )= (K\)/k =\. So A is an unbiased estimator of A.
b. Similarly, V(% ) < ky/k?, where y < oo is defined above. Since k=n/2, V(A ) goes to 0
with nand A is a consistent estimator.

a. Note that fori=1,2, ...,k
E(Y, —Y,.,)=0 V(Y =Yy = 26° = E[(Yy _Yzm)z-

Thus, it follows from methods used in Ex. 9.23 that 6° is an unbiased estimator.

b.V(6*)= 12 ZLV [(Y, =Y, )] :ﬁ\/[(Yz —Y,)?1, since the Y’s are independent and

4k
identically distributed. Now, it is clear that V[(Y, —Y,)*]< E[(Y, = Y,)"], and when this
quantity is expanded, only moments of order 4 or less are involved. Since these were

assumed to be finite, E[(Y, —Y,)*] < and so V(6°)= ﬁv [(Y,-Y,)’] = Oasn— o,

C. This was discussed in part b.
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9.24

9.25

9.26

9.27

9.28

9.29

9.30

9.31

9.32

9.33

a. From Chapter 6, Z:;Yi2 is chi—square with with n degrees of freedom.

b. Note that E(W,)=1 and V(W,)=1/n. Thus,as n — oo, W, — E(W,)=1 in
probability.

a. Since E(Y;) =, Y; is unbiased.

b. P(JY, —p£1)=P(-1<Z <1)=.6826.

c. The estimator is not consistent since the probability found in part b does not converge
to unity (here, n = 1).

a. We have thatP(0 —e <Y, <0+¢)=F  (0+¢)-F, (0-¢).
e Ife>0, F,(0+¢)=1and F,(0-¢)=0. Thus, P(O-e<Y,  <0+¢)=1.
o Ife<0, F, (0+e)=1, F,(0-g)=(%)". So, P(O—-e<Y,, <0+&)=1-(%)".

b. The result follows from lim,_,, P(0—e<Y, <0+¢)=lim ll — (=) J: 1.

P(Y,, —0<e)=PO-e<Y, <0+e)=F,(0+&)~F,0-¢)=1-(1-%) =(&)".

0
But, lim (%)n =0for e <0. So, Y is not consistent.

P(Y,, ~Bl<e)=P@-c<Y, <B+&)=FyB+8)—F,B-e)=1-(L)". Since

lim, (&)un =0 for € >0, Y(;) 1s consistent.

P(Y.

Iim

0 —0Ke)=PO-c<Y, <0+e)=F,(0+¢)—F, (0—¢&)=1-(%)". Since

o (E&=2)" =0 fore>0, Y is consistent.
Note that Y is beta with p = 3/4 and o> = 3/5. Thus, E(Y ) =3/4 and V(Y ) = 3/(5n).
Thus, V(Y ) —» 0and Y converges in probability to 3/4.

Since Y is a mean of independent and identically distributed random variables with finite
variance, Y is consistent and Y converges in probability to E(Y ) = E(Y) = ap.

Notice that E(Y?) = _[ y? %dy = J2dy = o0, thus V(Y) = o and so the law of large
2 2
numbers does not apply.

By the law of large numbers, X and Y are consistent estimators of A; and A,. By

Theorem 9.2, )%? converges in probability to xlﬁ—‘kz . This implies that observed values of
the estimator should be close to the limiting value for large sample sizes, although the
variance of this estimator should also be taken into consideration.
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Following Ex. 6.34, Y* has an exponential distribution with parameter 6. Thus, E(Y?) =6
and V(Y?) = 0. Therefore, E(W,) = 0 and V(W,) = 6*/n. Clearly, W, is a consistent
estimator of 6.

a E(Y,)=L(u+p+--+p)=p,so Y, is unbiased for p.
b.V(Y,)=L(c] +05 ++03)=L>" of.

c. In order for Y, to be consistent, it is required that V(Y,) — 0 as n — co. Thus, it must

be true that all variances must be finite, or simply max; {c;} <.

Let Xi, Xy, ..., Xn be a sequence of Bernoulli trials with success probability p. Thus, it is
seen that Y = Z_nﬂ X, . Thus, by the Central Limit Theorem, U = P — P has a limiting
: Pq

n

standard normal distribution. By Ex. 9.20, it was shown that p, is consistent for p, so it

makes sense that ¢, is consistent for ¢, and so by Theorem 9.2 f_(, is consistent for pqg.

Define W, = _| Pa, so that W, converges in probability to 1. By Theorem 9.3, the
Pq

..U P, — .
quantity —* = b P converges to a standard normal variable.

S

=

The likelihood function is L(p) = p™ (1 — p)" ™. By Theorem 9.4, Zin:l X, is sufficient
for p with g(Zx,, p)= p™ (1— p)"™ and h(y) = 1.

For this exercise, the likelihood function is given by

n . 2 B
L :;exp —Z““(zy—'zu) =2n)"*c™" exp{ ! (Zin_l y. —2uny + npz)}.
S _

(2n)n/26n 202

a. When o’ is known, Y is sufficient for p by Theorem 9.4 with

_ 2uny — nu’ _ /2 -n I <n
g(y,n)= eXP(T and h(y) = (2m) """ exp o2 Doy
b. When p is known, use Theorem 9.4 with
2wy’
267

o0 (Y ~w.0?) = (07) " exp and h(y) = (21) ">

c. When both p and 6” are unknown, the likelihood can be written in terms of the two
statistics Uy =Y Y, and Uy =) ;" with h(y) = (2r)"?. The statistics Y and S’

are also jointly sufficient since they can be written in terms of U; and U,.
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9.39

9.40

941

9.42

9.43

9.44

9.45

9.46

Note that by independence, U = ZL Y, has a Poisson distribution with parameter nA.

Thus, the conditional distribution is expressed as
Hn }Lyi ei}L }Lzyi e7n}L

PY, =Y,....Y, =Y, =y Iy,!
P(Yl:yl""’Yn:yn|U:u): ( : yl y ): uy—nk = LY—nh :
PU =u) (nh)'e (nA)"e
u! u!
We have that Xy, =u, so the above simplifies to
u! iF

—— if Xy, =u

P(Y, = Y1, Yy =y, U =) =ty

0 otherwise

Since the conditional distribution is free of A, the statistic U = Zin=1Yi is sufficient for A.

The likelihood is L(8)=2"0"] ", v, exp(— > /e). By Theorem 9.4, U=>"" Y7 is
sufficient for 6 with g(u,0)=0"exp(-u/0) and h(y)=2"] ] v; .

n -1 n
The likelihood is L(a)=a™"m" (Hi:I Y; )m exp(— zi=1 yi"/ oc). By Theorem 9.4, U
n . . . n -1
=2 . Y" issufficient for a with g(u,a)=0o" exp(—u/a) and h(y) = m" (r[i=1 yi)m _

The likelihood function is L(p) = p"(1— p)* ™" = p"(1- p)”". By Theorem 9.4, Y is
sufficient for p with g(y, p)= p"(1— p)” ™" and h(y) = 1.

n -1 n
With 0 known, the likelihood is L(at)=a"07"|] |, yi)a . By Theorem 9.4, U = H Y,

i=1 !

n —1
is sufficient for o with g(u,0)=a"0™™ ([ ], yi)ﬂ and h(y) = 1.

n (a+l)
With B known, the likelihood is L(at) =a"B™|] |, | yi) . By Theorem 9.4, U =
l_anlYi is sufficient for a with g(u,o) = a"B™ (u)‘(‘“” and h(y) = 1.

The likelihood function is
L®) =TT, (v 10 =[a@ [T, bty kxp- 3" d(y)|
Thus, U = Zin:l d(Y;) is sufficient for 6 because by Theorem 9.4 L(0) can be factored

into, where u=Y"" d(y;), g(u,0)=[a(0)]" exp[- c(8)u] and h(y) = " b(y,)-

The exponential distribution is in exponential form since a(f) = c(B) = 1/ B, b(y) =1, and
d(y) =y. Thus, by Ex. 9.45, ZLYi is sufficient for B, and then sois Y .
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We can write the density function as f(y|a)=a0" exp[-(a—1)Iny]. Thus, the density

n _
has exponential form and the sufficient statistic is 2 In (Yi ) . Since this is equivalently
i-1

n

expressed as ln(l_[i:IYi ), we have no contradiction with Ex. 9.43.

We can write the density function as f(y|a)=ap” exp[—(a +1)Iny]. Thus, the density

has exponential form and the sufficient statistic is zin:l InY, . Since this is equivalently

expressed as In l—Iin:lYi , we have no contradiction with Ex. 9.44.

The density for the uniform distribution on (0, 0) is f(y|0)= % ,0<y<80. For this

problem and several of the following problems, we will use an indicator function to
specify the support of y. This is given by, in general, for a <b,

1 ifa<y<b
Ia,b(y): .

0  otherwise

Thus, the previously mentioned uniform distribution can be expressed as

(1) =5 1ou(¥).

The likelihood function is given by L(0) = BLHH:_I loo(Yi)= % loo(Yn))» since

Hin:l loo(Yi)=106(Yn). Therefore, Theorem 9.4 is satisfied with h(y) = 1 and
1

g(y(n)ae) = e_n Io,e(y(n)) .

(This problem could also be solved using the conditional distribution definition of
sufficiency.)

As in Ex. 9.49, we will define the uniform distribution on the interval (6;, 6,) as

1
f(y|0,,0,)=——I .
(y16,,6,) 0, -6) 6,0, ()
The likelihood function, using the same logic as in Ex. 9.49, is
1 n 1
L(6,,0,)=—————] | .| i)=——1 | m/ -
0.0 = gy L e 00 = g7 Yo Yoo, Vi)
1

So, Theorem 9.4 is satisfied with g(y,,),Y,),0,,0,) =

h(y) = 1.

m Ielaez (y(l) ) I 0,.0, (y(n)) and
2 1

Again, using the indicator notation, the density is
f(y[60)=exp[—(y - O)]I,..(Y)

(it should be obvious that y < oo for the indicator function). The likelihood function is
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9.52

9.53

9.54

9.55

9.56

L(©) = expl- 37y + O[T 1o (v =expl- X7y + n0)1,.. (v,
Theorem 9.4 is satisfied with g(y,),0) = exp(ne)l ax(Yay) and h(y)= exp(— Zn y).

i=1
Again, using the indicator notation, the density is
3 2
f(y|0)==2-1

0° o,e(y) .

3I’1 n 2 . 3!’1 n i2
The likelihood function is L(8) = %Hi_l loo(Y;)= % lo6(Yn)) - Then,
Theorem 9.4 is satisfied with g(y,,,,0)=07"1,4(y,) and h(y)=3" H; y .

Again, using the indicator notation, the density is

2607
f(y|9)=7le,w(y)-

The likelihood function is L(8)=2"0> ([T v T 1o (v) = 2" ([T, ¥ Mo (V)
Theorem 9.4 is satisfied with g(y,;,,0)=6"1,_(Yy,) and h(y)=2" in:1 y; )

Again, using the indicator notation, the density is
f(ylo,0)=ab™y*" loo(Y)-
The likelihood function is

n - n np-no n -l
L@, =0 [Ty, S T, lew 0 = @0 ([T, v, 1Yo
n n -1
Theorem 9.4 is satisfied with g(l_L:l Y. Yin»0,0)=a"07 O yi)a loo(Yn))»> h(y) =1
so that (Hin:lY i ,Y(n)) is jointly sufficient for o and 6.

Lastly, using the indicator notation, the density is
f(yleB)=apy 1 .(y).
The likelihood function is
—(o+1) —(o+1)

Lo =o' (T, T 0 =08 (T, .
—(a+l)

Theorem 9.4 is satisfied with g(l_[in:1 Y. Yays0LB) = o™ (Hin_l y

h(y) = 1 so that (Hin:lY i ,Y(l)) is jointly sufficient for a and P.

jlﬁ,oo(y(l)) , and

In Ex. 9.38 (b), it was shown that Zinzl(yi —p)? is sufficient for o®. Since the quantity

6% = %zinzl(yi —n)” is unbiased and a function of the sufficient statistic, it is the MVUE

2
of .
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Note that the estimator can be written as
o, S2+S2
&2 = 2x Y
2
where S, =ﬁz::l(xi -X), S, = inn:l (Y, =Y)* . Since both of these estimators

n-1

are the MVUE (see Example 9.8) for 6* and E(6%) = 6°, 6 is the MVUE for 6°.

2

From Ex. 9.34 and 9.40, Z:in:lYi2 is sufficient for 6 and E(Y?) = 0. Thus, the MVUE is
- s
0= %Zi:lYi )

Note that E(C) = E(3Y?) = 3E(Y?) = 3[V(Y) + (E(Y))*] = 3(L + A?). Now, from Ex. 9.39, it
was determined that ZLYi is sufficient for A, so if an estimator can be found that is
unbiased for 3(A + 1) and a function of the sufficient statistic, it is the MVUE. Note that
ZLIY- is Poisson with parameter N\, so
E(Y?)=V()+[E(Y)] =%+27, and
E(Y /n)=A/n.

Thus A% = E(Y 2)— E(Y /n) so that the MVUE for 3(A + A?) is

V2 =Y /in+Y =32 +¥(1-1)

a. The density can be expressed as f(y|0)=0exp[(0—1)Iny]. Thus, the density has

exponential form and — zin:l Iny, is sufficient for 0.

b. Let W =—InY. The distribution function for W is
F, (W)=PW <w)=P(-InY <w)=1-P(Y < e-W)=1—jOe oy*'dy=1-e", w>0.

This is the exponential distribution function with mean 1/6.

C. For the transformation U = 20W, the distribution function for U is

F,(U)=PU <u)=PQ26W <u)=PW <1)=F,(&)=1-¢"?,u>0.
Note that this is the exponential distribution with mean 2, but this is equivalent to the
chi—square distribution with 2 degrees of freedom. Therefore, by property of independent

chi—square variables, ZOZ;Wi is chi—square with 2n degrees of freedom.

d. From Ex. 4.112, the expression for the expected value of the reciprocal of a chi—square

n 1
variable is given. Thus, it follows that E[(zez_ IWJ }: 5 1 = . 1 5
i= n— n—

e. From part d, n-t __ n-l is unbiased and thus the MVUE for 6.

SIW, =3 Y,

i=1 !
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9.61

9.62

9.63

9.64

9.65

9.66

It has been shown that Y is sufficient for 0 and E(Y(n)) = (ﬁ)@ Thus, (”T”)Y(n) is the
MVUE for 6.

o0

Calculate E(Y,,)) :Inye"”(y"e)dy :jn(u +0)e™du=0+L. Thus, Yi)— + is the MVUE
0 0

for 0.

a. The distribution function for Y is F(y)=y’/0°,0<y<0. So, the density function for

Y is £, (y)=n[F(NI™" f(y)=3ny™" /0", 0<y<0.

b. From part a, it can be shown that E(Y(y)) = $250. Since Y(y) is sufficient for 0, 22+ Y
is the MVUE for 0.

a. From Ex. 9.38, Y is sufficient for n. Also, sincec =1, Y has a normal distribution
with mean p and variance 1/n. Thus, E(Y *)=V (Y )+[E(Y)]> =1/n+ n’. Therefore, the

MVUE for *is Y* —1/n.
b. V(Y2 =1/n)=V(Y*)=E(Y*) = [E(Y )] =E(Y *)—[1I/n + p*]*. It can be shown that
E(Y*)= n%+%+ n (the mgf for Y can be used) so that

V(Y?=1/n)= n%+%+p4 ——[ln+p* = Q2 +4np*)/n’.

a. E(T)=P(T =1)=P(Y, =1,Y, =0) = P(Y, =1)P(Y, =0) = p(1 - p).

1Y, =0W = PEY, =1Y,=0,Y" Y, =w-1
b. P(T =1|W :w)=P(Yl LY, oW =w) _ P, =LY, 2 )

PW =w) PW =w)
1 n-2 w-l g n—(w-1)
P =P, = 0P Y =w-ny PUTP g PP
o _
W =w) (anW(l_p)nw
w
_ w(n —w)
nin-1)
c. E(T |W):P(T:1|W):Vl(n_WJ:( n Jﬂ(l—\’l}. Since T is unbiased by
n\n- n-1)n n

part (a) above and W is sufficient for p and so also for p(1 —p), nY (1-Y)/(n—1) is the
MVUE for p(1 — p).

a. i. The ratio of the likelihoods is given by

L(X’ p) _ pZXI (1 — p)n—Exi _ pZX. (1 _ p)—in z( p jEXi—Zyi
L(y|p) pzy' (1- p)“‘Eyi pzy. (1- p)—zyi - p
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il IfZx; = Zy; , the ratio is 1 and free of p. Otherwise, it will not be free of p.

iii. From the above, it must be that g(Y,,...,Y,) = zin:lYi is the minimal sufficient

statistic for p. This is the same as in Example 9.6.

b. i. The ratio of the likelihoods is given by
L(X|9) Zn(H” )e—n exp(— Z” X2/9) H|1 [ p[_ (Z _Z y. )}
Ly 1) 2" ([T, v)0 " exp-3,v2/0) [T, e

ii. The above likelihood ratio will only be free of 0 if > " x’=>"" Y, so that

inzlYi2 is a minimal sufficient statistic for 0.

9.67 The likelihood is given by

1
L(ylu,62)= )n/ZGn X

o > i
(2n 267 '

The ratio of the likelihoods is
L(X |p,0°) { 1 n 2 n 2 ]}
Ly lio®) O 207 o W= 20, )
1 n n n n
eXp{_ ) Ei:l Xi2 - Zi:l yi2 o 2H(Zi:1 Xi = Zi:l Yi )]}

This ratio is free of (1, °) only if both Z X' = z y. and Z_l , Zin:l Y, , SO

Zi:lYi and Zi:lYi form jointly minimal sufficient statistics for p and o°.

9.68 For unbiased estimators ¢;(U) and g,(U), whose values only depend on the data through
the sufficient statistic U, we have that E[g;(U) — g2(U)] = 0. Since the density for U is
complete, g;(U) — g2(U) = 0 by definition so that g;(U) = g2(U). Therefore, there is only
one unbiased estimator for 6 based on U, and it must also be the MVUE.

9.69 Itis easy to show that p= £ so that 6 =2 . Thus, the MOM estimator is 0=2C1

Since Y is a consistent estimator of i, by the Law of Large Numbers 0 converges in
probability to 6. However, this estimator is not a function of the sufficient statistic so it
can’t be the MVUE.

9.70  Since p = A, the MOM estimator of A is A=m/ =Y.

9.71  Since E(Y) = u! =0and E(Y?) = u}, = V(Y) = 6%, we have that 6 =m), =—Z” 2.
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9.72
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9.76
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9.78

9.79

9.80

Here, we have that p/ = pand p), =c”+p>. Thus, i=m/ =Y and 6> =m, -Y? =

O MAGE SRS IVERD S

Note that our sole observation Y is hypergeometric such that E(Y) = n6/N. Thus, the
MOM estimator of 6 is 6 =NY /n.

0
a. First, calculate p; =E(Y) = .[Zy(e —y)/0°dy =0/3. Thus, the MOM estimator of 0 is
0

6=3Y.
b. The likelihood is L(0)=2"0"" Hi”zl(e —Y;). Clearly, the likelihood can’t be factored

into a function that only depends on Y , so the MOM is not a sufficient statistic for 0.

The density given is a beta density with o = =0. Thus, u; = E(Y)=.5. Since this
doesn’t depend on 0, we turn to p, = E(Y?*) = soey (see Ex. 4.200). Hence, with

m; = %Zn Y2, the MOM estimator of 0 is 0 = 12"
1

-1 ! 2 4mj—

Note that p; = E(Y) = 1/p. Thus, the MOM estimator of pis p=1/Y.
Here, pu; =E(Y)= 30. So, the MOM estimator of 0 is 0= 2y.

For Y following the given power family distribution,

3 sl |3
E(Y)=[ay*3 dy =a3 "Ly =2
0

a+l 0 a+l

A

Thus, the MOM estimator of 0 is 0= .

T3y

For Y following the given Pareto distribution,

E(Y)=[ap®ydy =ap*25| =ap/a-1).
B

The mean is not defined if o < 1. Thus, a generalized MOM estimator for o cannot be
expressed.

a. The MLE is easily found to be =Y.

b. E(A) =4, V(&)= .

c. Since A is unbiased and has a variance that goes to 0 with increasing n, it is consistent.
d. By the invariance property, the MLE for P(Y = 0) is exp(—1. ).
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The MLE is § = Y. By the invariance property of MLEs, the MLE of 6% is Y 2.

n -1 n
The likelihood function is L(6) = 9’”r”(]_[i:1 yi) exp(— > /e).
a. By Theorem 9.4, a sufficient statistic for 0 is ZinzlYir .
b. The log-likelihood is
InL(6)=—nInB®+ nlnr + (r — 1)111(1_[;‘=1 Y, )— zi“:l y /0.
By taking a derivative w.r.t. 8 and equating to 0, we find 6= %ZLY{ .

c. Note that 0 is a function of the sufficient statistic. Since it is easily shown that
E(Y")=0, 6 is then unbiased and the MVUE for 6.

a. The likelihood function is L(0)=(20+1)™". Lety=y(0)=20 + 1. Then, the

likelihood can be expressed as L(y) =y ". The likelihood is maximized for small values
of y. The smallest value that can safely maximize the likelihood (see Example 9.16)
without violating the support is ¥ =Y,,. Thus, by the invariance property of MLESs,

0=1(v,, —1).
b. Since V(Y) = (291;')2 By the invariance principle, the MLE is (Ym))2 /12.

P .

This exercise is a special case of Ex. 9.85, so we will refer to those results.
a. The MLE is §=Y /2, so the maximum likelihood estimate is y/2 =63.

E(0)=0,V(0)=V(Y /2)=0%6.

b.
C. The bound on the error of estimation is 2«/0 (é) =24(130)*/6 =106.14.
d. Note that V(Y) = 26% = 2(130)>. Thus, the MLE for V(Y) = 2(6)>.

a. For a > 0 known the likelihood function is

L0 = o T el )

The log-likelihood is then
InL(0) =—-nIn[T(a)] — Nt InO + (o0 — 1)111(]_[?:l y, )— > Vi/0
so that
SInL(@)=-na/0+ Y y,/0".
Equating this to 0 and solving for 0, we find the MLE of 0 to be

0=L>"Y, =1V,
b. Since E(Y) = a6 and V(Y) = ab* E(6) =6, V()= 6 /(na).

c. Since Y is a consistent estimator of u = a#, it is clear that 6 must be consistent for 0.
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9.86

9.87

d. From the likelihood function, it is seen from Theorem 9.4 that U = ZLYi isa

sufficient statistic for 6. Since the gamma distribution is in the exponential family of
distributions, U is also the minimal sufficient statistic.

e. Note that U has a gamma distribution with shape parameter na and scale parameter 0.
The distribution of 2U/0 is chi—square with 2na degrees of freedom. Withn=35, a =2,

2U/0 is chi-square with 20 degrees of freedom. So, with 3, = 10.8508, %3, = 31.4104,
2> Y 2> Y,

a 90% CI for 0 is =L )
31.4104 10.8508

First, similar to Example 9.15, the MLEs of p; and p are i, = X and i, =Y . To
estimate 02, the likelihood is

2 1 1| N Xi_12 " yi__22
L(c™) = (2m)(m 2 g eXp{_il:Zm(Tuj _ZH( GH j ]}

The log—likelihood is

InL(6®)= K —(m+minc— 3" (x -, F - 3" (v, -,
By differentiating and setting this quantity equal to 0, we obtain

5% = Ziril(xi - Ml)z _ZLI(Yi —H, )2 .

N m+n
As in Example 9.15, the MLEs of ; and p, can be used in the above to arrive at the MLE

for o
&2 = ZL(Xi B X)2 _ZL(Yi _Y)2 ‘

m+n

Let Y, =# of candidates favoring candidate A, Y, = # of candidate favoring candidate B,
and Y; = # of candidates favoring candidate C. Then, (Y, Y2, Y3) is trinomial with
parameters (P, P2, P3) and sample size n. Thus, the likelihood L(p;, p2) is simply the
probability mass function for the trinomial (recall that (p; = 1— p; — p2):

L(pla pz):#‘vnsv plyl pzyz(l_ p, — pz)y3

This can easily be jointly maximized with respect to p; and p, to obtain the MLEs
p,=Y,/n, p,=Y,/n,andso p,=Y,/n.

For the given data, we have p, =.30, p, = .38, and p, =.32. Thus, the point estimate

of p; — p»is .30 — .38 =—.08. From Theorem 5.13, we have that V(Y;) = np;g; and
Cov(Yi,Yj) =—npip;. A two—standard—deviation error bound can be found by

2\/V(p1_ f)z)=2\/V(f)l)+V(f>2)—2C0v(D1,bz):2\/p1q1/n+ pzqz/n+2p1pz/n~

This can be estimated by using the MLEs found above. By plugging in the estimates,
error bound of .1641 is obtained.
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The likelihood function is L(0)= (8 +1)" (]‘[i”=1 Y, )e The MLE is 6=-n/>"" InY,. This

is a different estimator that the MOM estimator from Ex. 9.69, however note that the
MLE is a function of the sufficient statistic.

Note that the likelihood is simply the mass function for Y: L(p)= (f, )py (1- p)*”. By

the ML criteria, we choose the value of p that maximizes the likelihood. IfY =0, L(p) is
maximized at p=.25. If Y =2, L(p) is maximized at p=.75. But, if Y =1, L(p) has the
same value at both p=.25 and p = .75; that is, L(.25) = L(.75) for y = 1. Thus, for this
instance the MLE is not unique.

Under the hypothesis that pw = pm = p, then Y = # of people in the sample who favor the
issue is binomial with success probability p and n = 200. Thus, by Example 9.14, the
MLE forpis p=Y/n and the sample estimate is 55/200.

Refer to Ex. 9.83 and Example 9.16. Lety =20. Then, the MLE foryis y =Y, and by

the invariance principle the MLE for 0 is 0=y /2.

(n)

a. Following the hint, the MLE of 0 is =Y, .

b. From Ex. 9.63, f,(y)= 3ny’""/0°", 0 <y <0. The distribution of T = Y(»)/0 is

f.()=3nt"",0<t<1.
Since this distribution doesn’t depend on 0, T is a pivotal quantity.

C. (Similar to Ex. 8.132) Constants a and b can be found to satisfy P@<T<b)=1-a
such that P(T <a) = P(T > b) = /2. Using the density function from part b, these are

givenby a=(a/2)"®" and b=(1-a/2)"®". So, we have
l—a=P@<Yn/0<b)= P, /b<0<Y, /a).

Y(n) Y(n) :
Thus, , isa(1—a)100% CI for 6.
(1-a/2)"C"7 (a/2)"C"

a. Following the hint, the MLE for 0 is 6=Y,,).

b. Since F(y | ) = 1 — 20%y %, the density function for Y 1s easily found to be
gy (¥)=2n6""y ",y > 0.
If we consider the distribution of T = 0/Y 1), the density function of T can be found to be
f.(t)=2nt>"",0<t<1.

C. (Similar to Ex. 9.92) Constants a and b can be found to satisfy P@<T<b)=1-a
such that P(T <a) = P(T > b) = /2. Using the density function from part b, these are

given by a=(a/2)"*" and b=(1-0a/2)"*" . So, we have
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9.94

9.95

9.96

9.97

9.98

l-a=P@<0/Nq<b)= P(aY(l) <0< bY(l)).

Thus, [(0/2)"27Y,,,, (1-a/2)"®"Y,, | isa (1 - 0)100% CI for 6.

(1>

Let p=1(0) so that 0 = t'(B). If the likelihood is maximized at 0, then L( é) > L(0) for

all 6. Define [3 =1( 0 ) and denote the likelihood as a function of B as Li(B) = L(t™'(B)).
Then, for any £,

L(B)=Lt"(B)=L®O)<LO) =Lt B)=LP).
So, the MLE of B is f3 and so the MLE of t(0) is t(é).

The quantity to be estimated is R = p/(1 — p). Since p=Y /n is the MLE of p, by the
invariance principle the MLE for R is R= p/(1- p).

From Ex. 9.15, the MLE for * was found to be & = %zin:l (Y, =Y)*. By the invariance

property, the MLE for 6 is 6 =v6° = \/% Zin:l ,-Y).

A

a. Since p| =1/ p, the MOM estimator for pis p=1/m/ =1/Y.

b. The likelihood function is L(p)= p"(1— p)™ ™" and the log-likelihood is
InL(p)=nlnp+(Q. ¥, —minl-p).

Differentiating, we have

dinl(p)=2-LC yvi—n).
Equating this to 0 and solving for p, we obtain the MLE p=1/Y, which is the same as
the MOM estimator found in part a.

Since In p(y | p)=Inp+(y-1DlIn(l - p),
snpyp)=1/p-(y-1)/1-p)
Snp(y[p)=-1/p* =(y=D/1-p)’.

Then,

~E[-Inp(Y | p)]=—E[—1/ P (Y 1= py e

p’(1-p)
Therefore, the approximate (limiting) variance of the MLE (as given in Ex. 9.97) is given
by
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From Ex. 9.18, the MLE fort(p)=pis p=Y/n and with — EL;’Tzzln p(Y | p)J:ﬁ ,a

100(1 — @)% CI for pis p+2z,,,y/2=2 . This is the same CI for p derived in Section 8.6.

In Ex. 9.81, it was shown that Y * is the MLE of t(8) = 6%. It is easily found that for the
exponential distribution with mean 6,

—E[;Tilnfme)]=é.

Thus, since $t(0) =26, we have an approximate (large sample) 100(1 — o1)% CI for 6 as
2Y°

tz .

a/Z( \/ﬁ J

From Ex. 9.80, the MLE for t(A) = exp(—A) is t(i )= exp(—f» y=exp(=Y ). Itis easily
found that for the Poisson distribution with mean A,

) 1
- E[é‘?ln pY M)]:X'
Thus, since &-t(A)=—exp(—A), we have an approximate 100(1 — a)% CI for X as

— exp(—2A - Y exp(-2Y
exp(-V) 22, [ TR exp¥)a g, PR
A A=Y

With n =30 and Yy = 4.4, the maximum likelihood estimate of p is 1/(4.4) =.2273 and an
approximate 90% CI for p is

(.2273)*(.7727)

N A
R L Gl DR TE 1.96\/
’ n

= 2273 +.0715 or (.1558, .2988).

The Rayleigh distribution is a special case of the (Weibull) distribution from Ex. 9.82.
Also see Example 9.7

a. FromEx. 9.82withr=2, 0=1>" Y.,

i=1 |
b. Itis easily found that for the Rayleigh distribution with parameter 0,
1 2y’
0 0
Since E(Y?) =0, — E[;Tiln f (Y |e)]:é and so V(0) = 67/n.

Linf(Y[0)=

a. MOM: p/ =E(Y)=0+1,50 6, =m/ —1=Y —1.

b. MLE: éz =Y ., the first order statistic.

(O
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9.105

9.106

9.107

9.108

C. The estimator él 1s unbiased since E( él) =E(Y)-1=06+1-1=80. The distribution
of Yayis 9y (y)=ne™"™,y>0. So, E(Y() =E(H,)= £ +0. Thus, 0, is not unbiased
but 6, =Y, — 1 is unbiased for 0.

The efficiency of 0, =Y -1 relative to 0, =Y, -
_V(é;) _V(Y(n —) _V(Y(l)) _
V) V-D v

L is given by

eff(6,,6;)

S|

e

o’
1
n

From Ex. 9.38, we must solve

d?lnl _ -n , Z(i-w)* _ A2 _ Z(yi-p)
I =0, so 6" =",

Following the method used in Ex. 9.65, construct the random variable T such that
T=1ifY;=0and T = 0 otherwise
Then, E(T) =P(T =1)=P(Y; =0) = exp(-A). So, T is unbiased for exp(—A). Now, we

know that W = ZLIY- 1s sufficient for A, and so it is also sufficient for exp(—A).

Recalling that W has a Poisson distribution with mean na,

E(T|W =w)=P(T =1|W =w)=P(Y, =0|W =w) =

_mm:owca;nzw)
- PW =w)

P(Y, =0,W =w)
PW =w)

e (e—(n—l)x [(n-1)A]

)y

-n (nA)"
w!

e

Thus, the MVUE is (1 - %)ZY‘ . Note that in the above we used the result that Z;Yi is

Poisson with mean (n—1)A.

The MLE of 0 is =Y. By the invariance principle for MLEs, the MLE of F(t) is
F(t)=exp(~t/Y).

a.E(V)=P(Y,>1t)=1-F(t) = exp(-1t/0). Thus, V is unbiased for exp(-t/0).

b. Recall that U has a gamma distribution with shape parameter n and scale parameter 0.
Also,U—-Y; = ZLZYa is gamma with shape parameter N — 1 and scale parameter 6, and

since Y| and U — Y, are independent,

— -y,/6 -2 4—(u-y;)/6
F(yu-y) = (e b=y e e 0y <u <,
Next, apply the transformation z = u —y; such that u =z +y; to get the joint distribution
fOy, W) = (U= y,)" e 0<y <u<oo,

Now, we have

f(y, U= f(y““){”

-1 .
f(u) u”“j(u_yl) 1,0<ySu<o,
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RS ) T CU

t

-y

n-1 |4
:_[l_hj
u
t

n-1
So, the MVUE is (1 - Ulj .

Let Yy, Y, ..., Y, represent the (independent) values drawn on each of the n draws. Then,
the probability mass function for each Y;j is
PYi=k)=+.k=1,2,..,N.

a. Since p; =E(Y)= Z:j:l kP(Y =k)= ZE‘:I ki =50 = Nl the MOM estimator of N
Nl oY or N, =2Y —1.

b. First, E(Nl):2E(Y_)—1: (N“) 1=N,so N is unbiased. Now, since
E(Y?)=) k& =N0nonD <N+'>(62N+” , we have that V(Y) = (UND - Thyg,
V(N,) =4V (V) = 4(0hn) v

12n

a. Following Ex. 9.109, the likelihood is

L(N) =1~ in:l 1(y; € {1,2, .. ,N} ) =5 1(Y,, <N).
In order to maximize L, N should be chosen as small as possible subject to the constraint
that yn) < N. Thus NZ ZY(n)

b. Since P(N, <k) = P(Y,,, <k)=P(Y, <k)--P(Y, <k)=(%)", s0 P(N, <k —1) = (&)’
and P(N, =k)= ()" = () =N7"[k" = (k =1)"]. So,
E(N,)=N"D" kK" = (k=1)"1=N">" (k™ — (k=)™ —(k -1)"]
S U WU
Consider z:ﬂ(k -D"=0"+1"+2"+...+(N =1)". Forlarge N, this is approximately

n+l1

N
the area beneath the curve f(x) = X" from X =0 to X =N, or Z:=1(k -1 zjx”dx =N

N

Thus, E(N,)~ N"[N™ —X— 0N and N, = 21N, = 2y

n+l (n)

is approximately

unbiased for N.

c. V(N,) is given, so V(N;) = (&L)V(N, )=l
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d. Note that, forn> 1,

V(N)) _ n(n+2) (N2-1) _n_+2( R )>
V(N;) — 3n N2 T3 1 1’

since for large N, (1 - #)z 1

The (approximately) unbiased estimate of N is N s =2Y,, =£(210)=252 and an

n
approximate error bound is given by

2WV(N,) =27 =2,/ 227 = 85.192.

<]

-\

a. (Refer to Section 9.3.) By the Central Limit Theorem, converges to a standard
JA/n

normal variable. Also, Y /A converges in probability to 1 by the Law of Large Numbers,
as does VY /A . So, the quantity

Y -\
W oo NAM Y -2
" W/n WN/n

converges to a standard normal distribution.

b. By part a, an approximate (1 — 0)100% CI for Ais Y +z_,Y /n.



