We've studied linear functions in-depth. Now we'll use what we've learned to investigate piecewise functions and absolute functions.
A piecewise-defined function is "defined by different rules over different subsets of its domain." In plain English, a piecewise function is a bunch of functions put together. Consider the absolute value function (a simple example of a piecewise-defined function):

1. Complete the following table. Graph $f(x)$ and $g(x)$ over the interval $(-6,6)$.

x	$f(x)=x-3$	$g(x)=\|x-3\|$
-6		
-4		
-2		
0		
2		
4		
6		

2. Explain the difference between the two functions. Identify the domain and range of each function.

The absolute value function, $g(x)=|x|$, is never negative. If we input a positive value for x , the function yields a positive output. If we input a negative value for x , the function still yields a positive output. Therefore, we can write the absolute value function as a piecewise-defined function.

$$
f(x)=|x|=\left\{\begin{array}{cc}
x, & x \geq 0 \\
-x & , x<0
\end{array}\right.
$$

We can use absolute values in two ways to create new functions from old. First, we can take the absolute value of the output of a function. Second, we can take the absolute value of the input of a function.

In other words, given a function $f(x)$, we can create the following new functions: $\quad y=|f(x)|$ and $y=f(|x|)$
3. The graph of the function $f(x)=10 \cos \left(\frac{\pi x}{2}\right)$ is displayed below. Your goal is to graph and clearly label the following: $g(x)=|f(x)|$ and $h(x)=f(|x|)$

Explain how $\mathrm{g}(\mathrm{x})$ and $\mathrm{h}(\mathrm{x})$ differ from the original function. Identify the domain and range of each function.
4. For each of the following functions, sketch the graphs of: $g(x)=|f(x)|$ and $h(x)=f(|x|)$

5. Just as we solved linear equations analytically and graphically, we can solve absolute value equations and inequalities. Solve the following analytically and/or graphically

$$
|x-4|=|7 x+12| \quad|x-4|>|7 x+12|, \text { solve graphically }
$$

6. As was stated earlier, a piecewise-defined function is defined by different rules over different subsets of its domain. Here's an example of a piecewise function:

$$
f(x)=\left\{\begin{array}{cl}
3 x+1 & , x \leq 0 \\
1 & , 0<x<4 \\
(x-3)^{2} & , x \geq 4
\end{array} \quad\right. \text { Graph this function on the following axes. }
$$

To graph this function on your calculator, you need to enter the following:

$$
\begin{aligned}
& Y_{1}=(3 x+1) *(x \leq 0) \\
& Y_{2}=(1) *(x>0)(x<4) \\
& Y_{3}=\left((x-3)^{2}\right) *(x \geq 4)
\end{aligned}
$$

The inequality symbols are listed under TEST (above the MATH key)

Situation: In a triathlon, an athlete's distance is a function of time. Suppose a triathlon consists of the following legs:

1. You swim for 2.4 miles at 2 mph
2. You ride a bicycle at 20 mph for 112 miles
3. You run a 26.2 mile marathon at a speed of 9 mph

Your goal is to graph your distance as a function of time and write out the piecewise function

Extra-credit Question (worth quite a few points):
Three telecommunications companies offer the following wireless service plans.
Company A: $\$ 17.95$ monthly fee plus 73 cents per minute
Company B: $\$ 27.95$ monthly fee includes 15 free minutes. Each additional minute is 53 cents
Company C: $\$ 49.95$ monthly fee includes 60 free minutes. Each additional minute is 35 cents
Company D: $\$ 75.95$ monthly fee includes 150 free minutes. Each additional minute is 35 cents.
Graph the monthly bill as a function of the minutes used. Then write the piecewise function for the cheapest service plan from $0-180$ minutes.

