1. On your way to math class, you stumble across a magic lamp. After rubbing it, a genie appears and grants you 3 wishes. Since you're a typical college student, you wish for an "automatic money machine."

The genie grants your wish and an ATM-like machine appears. The genie tells you the machine will automatically add $\$ 50$ to whatever amount of money you insert into it. We'll call this Machine F.

You realize it will take too long to get rich from this machine, so you wish for a second machine that will automatically double any amount of money you insert. We'll call this Machine G.

While trying the machines out, you say, "Boy, I wish I had an adapter to hook these machines together." A few seconds later, the machines are magically connected.

These machines can be visualized as:


You can put money into either side of the machines.
2. Write out formulas for Machine F \& G, showing what happens when you insert \$X into each machine separately.
3. If you put money in on the right side, you are first finding $\mathrm{f}(\mathrm{x})$ and then evaluating $\mathrm{g}(\mathrm{x})$. This is written as $g(f(x))$. Find the value of $g(f(5)), g(f(10))$, and $g(f(x))$.
4. If you put money in on the left side, you are first finding $\mathrm{g}(\mathrm{x})$ and then evaluating $\mathrm{f}(\mathrm{x})$. This is written as $f(g(x))$.

Find the value of $f(g(5)), f(g(10))$, and $f(g(x))$.
5. Let $f(x)=x^{2}-1$ and $g(x)=\sqrt{x}$. Perform the following operations

$$
f(g(x))
$$

$$
g(f(x))
$$

6. Complete the following table:

| $\mathbf{x}$ | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| $\mathbf{m}(\mathbf{x})$ | 1 | 9 |  |


| $\mathbf{h}(\mathbf{x})$ | 2 | 0 | 1 |
| :--- | :--- | :--- | :--- |


| $m(h(x))$ | 5 | - |  |
| :--- | :--- | :--- | :--- |

7. How can we tell is a graph represents a function? Why does this work?
8. Suppose we conduct a horizontal line test. If a graph that passes this test, it means that each value of y (output) corresponds with exactly one value of $x$ (input). Functions that pass the horizontal line test are said to be invertible (or one-to-one).

Determine which of the following functions are one-to-one.

$$
y=x^{5}+7 \quad y=|x| \quad y=4\left(2^{x}\right) \quad y=x^{6}+2 x^{2}-10
$$

9. The range of a function becomes the domain of an inverse function. In this way, inverse functions "undo" each other. In other words, if $f(x)$ and $g(x)$ are inverse functions, then $f(g(x))=g(f(x))=x$.

Determine if the following pairs of functions are inverses by finding their compositions.

$$
\begin{aligned}
& f(x)=8 x+5 \\
& g(x)=\frac{x-5}{8}
\end{aligned}
$$

$$
\begin{aligned}
& j(x)=x^{3}+4 \\
& k(x)=\sqrt[3]{x+4}
\end{aligned}
$$

10. Once we're sure a function is invertible, finding an inverse functions is a simple 2-step process:
(1) Interchange $y$ and $x$. (Turn the range into the domain)
(2) Solve for $y$ to find the inverse function.

We symbolize the inverse function as $f^{-1}(x)$.
11. Find inverse functions for the following functions. Then graph both the original function and its inverse. What do you notice about the graph of a function and its inverse?
$f(x)=7 x-2$
$g(x)=\sqrt{x+5}$
$h(x)=\frac{1}{x}$
$h(x)=x^{2}+3$

