Here's a detailed explanation of why the standard error of a percentage (proportion) is: $\sqrt{\frac{p(1-p)}{n}} \ldots$

1. First, we need to recall the definitions of expected value (mean) and variance:

Expected Value: $E(x)=\sum x P(x)=$ sum of (each possible x -value) x (probability of obtaining that x -value)
Variance: $\operatorname{Var}(x)=E\left(x^{2}\right)-[E(x)]^{2}=\sum x^{2} P(x)-\left(\sum x P(x)\right)^{2}$
2. Then we need to realize that proportions follow a binomial distribution.

Binomial Distribution: A) A series of n independent trials
B) Each trial has to have only 2 possible outcomes: 0 or 1
C) Each trial must have a constant probability of being either 0 or 1

Suppose we're interested in the proportion of items that are defective from a manufacturing process.
B) Each item has 2 possible outcomes: $($ non-defective $=0)$ or $($ defective $=1)$

We don't know how many items are defective, but we can say that a proportion p of them are defective. We can randomly select one item from the manufacturing process and see if it is defective or not.
C) Each item has a constant probability of being defective. $P($ defective $)=P(x=1)=p$

If we randomly sample n of these items, then each independent item has the same probability of being defective.
A) A series of n independent trials

So if $\mathrm{X}=$ (total number of items that are defective from our sample), then X is a binomial random variable.
We are not interested in X (the total number of defective items); we're interested in the proportion of defects.
Therefore, we're interested in the variable $\hat{p}=\frac{X}{n}=\frac{\text { the number of defects }}{\text { the number of items we sample }}$
3. Now we can calculate the expected value and variance of our proportion. First, let's calculate the expected value and variance of X (the total number of defects). Remember that the probability of being a defect is p or $\mathrm{P}(\mathrm{x}=1)$ is p and the probability of not being a defect is $\mathrm{P}(\mathrm{x}=0)=1-\mathrm{p}$

Expected Value of one item being defective: $E\left(x_{1}\right)=\sum x_{1} P\left(x_{1}\right)=(1) p+(0)(1-p)=p$
The expected number of defects in total is: $E(x)=E\left(x_{1}+x_{2}+\ldots+x_{n}\right)=E\left(n x_{i}\right)=n p$
Variance of one item being defective: $\operatorname{Var}\left(x_{i}\right)=E\left(x^{2}\right)-[E(x)]^{2}=\left(1^{2}\right) p+\left(0^{2}\right)(1-p)-p^{2}=p-p^{2}=p(1-p)$
The variance of n items being defective is: $\operatorname{Var}(x)=\operatorname{Var}\left(x_{1}+x_{2}+\ldots+x_{n}\right)=\operatorname{Var}\left(x_{1}\right)+\ldots+\operatorname{Var}\left(x_{n}\right)=n p(1-p)$

If we know the expected value of X is: $E(x)=n p$ and we know that our proportion is $\hat{p}=\frac{X}{n}$, then we can calculate the expected value of our proportion: $E(\hat{p})=E\left(\frac{X}{n}\right)=E\left(\frac{1}{n} X\right)=\left(\frac{1}{n}\right) E(X)=\frac{1}{n} n p=p$
(because $E(a x+b)=a E(x)+b)$

If we know the variance of X is: $\operatorname{Var}(x)=n p(1-p)$ and we know that our proportion is $\hat{p}=\frac{X}{n}$, then we can calculate the variance of our proportion:

$$
\operatorname{Var}(\hat{p})=\operatorname{Var}\left(\frac{X}{n}\right)=\operatorname{Var}\left(\frac{1}{n} X\right)=\left(\frac{1}{n}\right)^{2} \operatorname{Var}(X)=\frac{1}{n^{2}} n p(1-p)=\frac{p(1-p)}{n}
$$

$\left(\right.$ because $\left.\operatorname{Var}(a x+b)=a^{2} \operatorname{Var}(x)\right)$

To convert this variance to a standard error, we simply need to take the square root: $S E(\hat{p})=\sqrt{\frac{p(1-p)}{n}}$

We also know the general formula for a z-statistic: $Z=\frac{(\text { observed })-(\text { hypothesized })}{\text { Standard Error }}=\frac{\text { (observed) }- \text { (expected) }}{\text { Standard Error }}$

So when we run a z-test for proportions, we use: $Z=\frac{p-E(p)}{S E(p)}=\frac{p-\hat{p}}{\sqrt{\frac{p(1-p)}{n}}}$

That's the formal mathematical reason why it all works out. There is a slightly more intuitive way of understanding this.
When we calculate a proportion, we count the number of items that possess a certain trait (the number of defective items). This means we are running a Bernoulli process - each item has a constant percent chance of being defective.
The variance of a Bernoulli random variable is $\operatorname{Var}(\mathrm{x})=\mathrm{p}(1-\mathrm{p})$
Whenever we convert a variance to a standard deviation, we simply take the square root. Thus $S D(x)=\sqrt{p(1-p)}$
The Central Limit Theorem tells us that to convert a standard deviation to a standard error, we divide by the square root of the sample size: $S E=\frac{S D}{\sqrt{n}}$

Therefore, $S E=\frac{S D}{\sqrt{n}}=\frac{\sqrt{p(1-p)}}{\sqrt{n}}=\sqrt{\frac{p(1-p)}{n}}$

