Recall: Discrete random variables can take on a countable number of values.
Continuous random variables can take on any value within a specified region.

Situation: The following histograms show the 2001 death rates for each state in the U.S. The values represent the number of deaths per 1000 people.
[National Vital Statistics Report (vol. 51) produced by the National Center for Health Statistics]

1) From the frequency histogram (on the left), how would you calculate the proportion of states that have death rates less than 7 per 1000 ? How could you calculate the same value from the relative frequency histogram (on the right)? If we select a state at random, what's the probability that we will select a state with a death rate of 7 or less? Note: The data includes Puerto Rico and Washington, DC.
2) Remember that when the bars of a histogram have a width of one unit, we can calculate probabilities by finding the areas under the curve. Verify this.
3) Is "death rate" a discrete or continuous random variable? Draw a smooth curve over the relative frequency histogram. Suppose we were interested in finding the probability of selecting a state with a death rate of 6.284 or less. How could we calculate this probability?

When we have a continuous random variable, its probability model can be displayed via a function $f(x)$. This function can be displayed as a formula or a distribution (curve).

IMPORTANT: $f(x)$ is not a probability! We must integrate $f(x)$ if we want to calculate probabilities (because probability is equivalent to the area under a curve)

The probability that a product will last X years is modeled by the following probability mass function: $f(x)=\frac{2 x}{\left(1+x^{2}\right)^{2}}$. Graphically, the pmf looks like this

In order to be a valid pmf, two conditions must be met:

A) The pmf must be positive for all valid values of x : $f(x) \geq 0$ for all x
B) The total area under the curve must be 1.0: $\quad \int_{-\infty}^{\infty} f(x) d x=1$

Let's verify condition B. We use u-substitution to integrate this function:

$$
\text { Let } u=1+x^{2} \text {. Then } d u=2 x d x \text { and } d x=\frac{1}{2 x} d u . \text { We substitute to get } \int_{0}^{\infty} \frac{2 x}{u^{2}}\left(\frac{1}{2 x}\right) d u=\int_{0}^{\infty} u^{-2} d u=\left.\lim _{a \rightarrow \infty} \frac{-1}{1+x^{2}}\right|_{0} ^{a}=1
$$

The integral of $f(x)$, denoted as $F(x)$, is what we use to calculate probabilities. I.
 person leaves for lunch. The following page displays four potential probability functions for X .

We're interested in the following three events:
 1) The student's lunch time will begin begore 12:15

2) The student's lunch time will begin after 12:45
3) The student's lunch time will begin between 12:20 and 12:40

4) Looking at the distributions, decide which probability functions (1, 2, 3, or 4$)$ represents the highest and lowest probability for each event. Complete the table:

	Highest Probability	Smallest Probability
Before $12: 15$		
After $12: 45$		
Between $12: 20$ and $12: 40$		

5) Using geometry, determine the relevant probabilities of these events for the $1^{\text {st }}$ (top left) probability function.

	Probability (area under curve)
Before $12: 15$	
After $12: 45$	
Between $12: 20$ and $12: 40$	

6) Using geometry, determine the relevant probabilities of these events for the $2^{\text {nd }}$ (top right) probability function.

	Probability (area under curve)
Before $12: 15$	
After $12: 45$	
Between $12: 20$ and $12: 40$	

7) Using geometry, determine the relevant probabilities of these events for the $3^{\text {rd }}$ (bottom left) probability function.

	Probability (area under curve)
Before $12: 15$	
After $12: 45$	
Between $12: 20$ and $12: 40$	

8) Calculating areas under the final pdf are more difficult. Suppose we know that the pdf can be expressed by: $f(x)=\left\{\begin{array}{cc}c x(1-x) & 0<x<1 \\ \text { Determine the value of } C \text { that makes this a valid pdf. }\end{array}\right.$ otherwise
9) Our pdf, once we input the proper value of c and calculate its integral, simplifies to: $\left[3 x^{2}-2 x^{3}\right]_{x=a}^{x=b} \quad$ Calculate the probabilities using this pdf.

Before $12: 15$	
After $12: 45$	
Between $12: 20$ and $12: 40$	

10) Using the same pdf, find the probability that the student leaves for lunch at exactly 12:15.
11) The other pdfs can be expressed by the following:

$$
\begin{array}{ll}
f_{1}(x)= \begin{cases}1 & 0<x<1 \\
0 & \text { otherwise }\end{cases} & f_{2}(x)=\left\{\begin{array}{cc}
2 x & 0<x<1 \\
0 & \text { otherwise }
\end{array}\right. \\
f_{3}(x)=\left\{\begin{array}{cc}
4 x & 0<x<1 / 2 \\
4(1-x) & 1 / 2<x<1 \\
0 & \text { otherwise }
\end{array}\right. & f_{4}(x)=\left\{\begin{array}{cc}
6 x(1-x) & 0<x<1 \\
0 & \text { otherwise }
\end{array}\right.
\end{array}
$$

Another way to characterize a continuous probability distribution is with a cumulative distribution function (cdf).

This function is defined just as it was with discrete distributions: $F(x)=P(X \leq x)$.
Because probabilities correspond to integrals with continuous probability distributions, this function can also be written as $F(x)=\int_{-\infty}^{x} f(t) d t$, where $f(x)$ is the pdf and t is a dummy variable of integration.
12) Determine the cdf's for each of the four probability functions. Sketch these cdf's:

The cdf can lead directly to probability calculations, such as: $P(a<X<b)=F(b)-F(a)$.

Calculating the expected value and variance of continuous random variables is rather straightforward:
Definition: The mean or expected value is defined to be $\mu=E(X)=\int_{-\infty}^{\infty} x f(x) d x$.
Rules for Expected Values: $E(h(X))=\int_{-\infty}^{\infty} h(x) f(x) d x$ When $h(\mathrm{X})$ is linear: $\mathrm{E}(\mathrm{aX}+\mathrm{b})=\mathrm{aE}(\mathrm{X})+\mathrm{b}$
Variance: $V(X)=\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x$ or the same calculation shortcut: $\mathrm{V}(\mathrm{X})=\mathrm{E}\left(\mathrm{X}^{2}\right)-[\mathrm{E}(\mathrm{X})]^{2}$
13) Find the expected value of the first three distributions

The (100p)th percentile of a probability distribution is the value (call it k_{p}) such that $\mathrm{P}\left(\mathrm{X} \leq k_{p}\right)=p$. In particular, the median is the $50^{\text {th }}$ percentile, the lower quartile is the $25^{\text {th }}$ percentile, and the upper quartile is the $75^{\text {th }}$ percentile.
14) Determine the median, lower quartile, and upper quartile for the $2^{\text {nd }}$ distribution.

