Complete this after Activity \#9.

Situation: The probability that a battery will hold a charge for X years is modeled by $f(x)=\frac{2}{(x+1)^{3}}$.

1. Show that this is, in fact, a valid probability function.
2. Find the probability that a randomly selected battery lasts between 2 and 5 years.
3. Find the probability that a randomly selected battery lasts more than 5 years.
4. Find the probability that a randomly selected battery lasts 5 years or more.
5. Find the probability that a randomly selected battery lasts exactly 5 years.
6. Write out the cumulative distribution function (cdf) and use it to calculate the probability of a battery lasting between 2 and 5 years.
7. Find the median ($50^{\text {th }}$ percentile) number of years a battery lasts.
8. Find the 90th percentile of the number of years a battery lasts.

1. Show that this is, in fact, a valid probability function.

First, I must show that this function is always positive (because all probabilities must be greater than zero).
The domain of my function is from 0 to infinity. Therefore, x must be a positive number. The function $f(x)=\frac{2}{(x+1)^{3}}$ is positive for all positive values of X , so this first condition is met. I could also simply graph this function and observe that it is always positive over the domain of interest.

Next, I must show that the area under the curve sums to 1.00 .
I need to show $\int_{0}^{\infty} \frac{2}{(x+1)^{3}}=1.00$.

I can rewrite: $\int_{0}^{\infty} \frac{2}{(x+1)^{3}}=2 \int_{0}^{\infty}(x+1)^{-3}$ and then use u-substitution:
Let $u=x+1$ so that $d u=d x$. Then I can rewrite: $2 \int u^{-3} d u$
Then I can find the integral: $2 \frac{u^{-2}}{-2}=-u^{-2}=-(x+1)^{-2}=\left.\frac{-1}{(x+1)^{2}}\right|_{0} ^{\infty}$
Evaluating the endpoints, I can find the area under the curve:

$$
\left.\frac{-1}{(x+1)^{2}}\right|_{0} ^{\infty}=\left[\frac{-1}{(\infty+1)^{2}}\right]-\left[\frac{-1}{(0+1)^{2}}\right]=\left[\frac{-1}{\infty}\right]-\left[\frac{-1}{1^{2}}\right]=0-(-1)=1.00
$$

2. Find the probability that a randomly selected battery lasts between 2 and 5 years.

$$
\int_{2}^{5} \frac{2}{(x+1)^{3}}=\left.\frac{-1}{(x+1)^{2}}\right|_{2} ^{5}=\left[\frac{-1}{(5+1)^{2}}\right]-\left[\frac{-1}{(2+1)^{2}}\right]=\left[\frac{-1}{36}\right]-\left[\frac{-1}{9}\right]=0.0833
$$

Or, simply, $F(x)=\frac{-1}{(x+1)^{2}}$ so that $P(2<X<5)=F(5)-F(2)=0.0833$
3. Find the probability that a randomly selected battery lasts more than $\mathbf{5}$ years.

$$
\begin{aligned}
& P(X>5)=1-P(X \leq 5)=1-\int_{0}^{5} \frac{2}{(x+1)^{3}}=1-\left[\left.\frac{-1}{(x+1)^{2}}\right|_{0} ^{5}\right]= \\
& \left.\frac{-1}{(x+1)^{2}}\right|_{0} ^{5}=\left[\frac{-1}{(5+1)^{2}}\right]-\left[\frac{-1}{(0+1)^{2}}\right]=\left[\frac{-1}{36}\right]-\left[\frac{-1}{1}\right]=0.9722
\end{aligned}
$$

So $P(X>5)=1-P(X \leq 5)=1-\int_{0}^{5} \frac{2}{(x+1)^{3}}=1-\left[\left.\frac{-1}{(x+1)^{2}}\right|_{0} ^{5}\right]=1-.9722=0.0278$
4. Find the probability that a randomly selected battery lasts 5 years or more.
$P(X>5)=P(X \geq 5)=0.0278$
5. Find the probability that a randomly selected battery lasts exactly 5 years.

For a continuous random variable, $P(X=5)=0$
6. Write out the cumulative distribution function (cdf) and use it to calculate the probability of a battery lasting between 2 and 5 years.
$F(x)=\frac{-1}{(x+1)^{2}}$. See the answer to problem \#2
7. Find the median ($50^{\text {th }}$ percentile) number of years a battery lasts.

Solve the following for a: $\int_{0}^{a} \frac{2}{(x+1)^{3}}=0.50$
$\left.\frac{-1}{(x+1)^{2}}\right|_{0} ^{a}=\left[\frac{-1}{(a+1)^{2}}\right]-\left[\frac{-1}{(0+1)^{2}}\right]=\left[\frac{-1}{(a+1)^{2}}\right]-\left[\frac{-1}{1}\right]=0.50 \quad$ so $\frac{-1}{(a+1)^{2}}=-0.50$
$-1=-0.5(a+1)^{2}$ so $2=(a+1)^{2}$ and then $\sqrt{2}=a+1$ so that $\sqrt{2}-1=a$.
The median is approximately 0.414 years

8. Find the 90 th percentile of the number of years a battery lasts.

Solve the following for a: $\int_{0}^{a} \frac{2}{(x+1)^{3}}=0.90$.
We find that the $90^{\text {th }}$ percentile is approximately 2.162. (Exact value is $\sqrt{10}-1=a$)

