The following table displays (a) scores from the Unit 1 test, (b) scores from the Unit 2 test, and (c) scores predicted for the Unit 3 test for each student this semester. Scatterplots display the same data.

Student	Test 1	Test 2	Test 3
1	20.5	41.0	52
2	27.5	48.5	
3	29.5	31.5	80
4	31.5	31.0	77
5	32.5	35.5	80
6	33.0	37.5	78
7	35.0	32.0	85
8	38.0	39.5	84
9	39.0	46.5	85
10	40.5	40.0	88
11	40.5	45.5	75
12	41.0	45.0	78
13	43.0	43.0	80
14	45.0	43.5	83
15	45.5	50.5	87
16	46.0	44.0	88
17	46.5	49.0	84
18	47.5	44.0	85
19	52.0	54.0	91
Means	38.63	42.18	81.11
Std Dv	8.04	6.52	8.46

1. Calculate Pearson's r, Spearman's rho, and Kendall's tau correlations between scores on Test 1 and Test 2.

Pearson's $\mathbf{r}=$ \qquad

Spearman's rho = \qquad

Kendall's tau $=$ \qquad
2. It looks like scores from Test 1 and Test $\mathbf{2}$ might have a linear relationship. In the top scatterplot displayed below, roughly sketch the line that you think best fits the data. Guess the slope and y-intercept of that line and write its equation here:

Test $2=$ \qquad (Test 1) + \qquad

3. If we want to find the equation of the line that best fits the Test 1 and Test $\mathbf{2}$ data, we use something called the least-squares criterion (which we'll learn in Activity \#13).

The line that best fits this data can be written as $Y=b_{0}+b_{1} X$, where $b_{0}=\mathrm{y}$-intercept and $b_{1}=$ slope .

To calculate the regression line by hand, we use the following: $b_{1}=r \frac{S_{y}}{S_{x}}$ and $b_{o}=\bar{Y}-b_{1} \bar{X}$ where $r=$ Pearson's correlation coefficient, $S_{y}=$ standard deviation of Y, $S_{X}=$ standard deviation of X, $\bar{Y}=$ mean of Y, and $\bar{X}=$ mean of X. If we let $X=$ Test \#1 scores and $Y=$ Test \#2 scores, calculate the regression line for this data and sketch it on the scatterplot below.

Regression Line: \qquad

4. Use your regression line to predict the Test 2 score for a student who earned a score of 45 on Test 1. What's your prediction for a student scoring 15 on Test 1? For which prediction do you have more confidence?

Predicted Test 2 score for student with Test $1=45$: \qquad

Predicted Test 2 score for student with Test $1=15$: \qquad

In which prediction do you have more confidence? Why? \qquad
6. When I had Stata compute correlations for our data, this is the output I received:

I then had Stata estimate the best-fitting line to predict Test $\mathbf{2}$ scores from Test $\mathbf{1}$ scores.

Test2	Coef.	Std. Err.		$p>\|t\|$	[95\% Conf. Interval]	
Test1	. 4772804	. 1589839	3.00	0.008	. 1418536	. 8127072
_cons	23.74611	6.266479	3.79	0.001	10.525	36.96723

Use this output to verify your answers to questions 1 and 3. Interpret the slope and y-intercept values in this line. What do they represent?

Interpretation of slope in this example: \qquad

Interpretation of y-intercept in this example: \qquad
5. Soon, we'll also learn about the coefficient of determination, R^{2}. Calculate this coefficient for the Test $2 \&$ Test 1 data by squaring your correlation coefficient. This coefficient can be interpreted in much the same way as we interpreted our eta-squared values in ANOVA. Go ahead and try to interpret your coefficient of determination.

$$
\mathbf{R}^{2}=
$$

\qquad . Interpretation of $\mathbf{R}^{2}=$ \qquad

