The following table displays (a) scores from the Unit 1 test, (b) scores from the Unit 2 test, and (c) scores predicted for the Unit 3 test for each student this semester. Scatterplots display the same data.

Student	Test 1	Test 2	Test 3
1	20.5	41.0	52
2	27.5	48.5	
3	29.5	31.5	80
4	31.5	31.0	77
5	32.5	35.5	80
6	33.0	37.5	78
7	35.0	32.0	85
8	38.0	39.5	84
9	39.0	46.5	85
10	40.5	40.0	88
11	40.5	45.5	75
12	41.0	45.0	78
13	43.0	43.0	80
14	45.0	43.5	83
15	45.5	50.5	87
16	46.0	44.0	88
17	46.5	49.0	84
18	47.5	44.0	85
19	52.0	54.0	91
Means	38.63	42.18	81.11
Std Dv	8.04	6.52	8.46

100

1. Calculate Pearson's r, Spearman's rho, and Kendall's tau correlations between scores on Test 1 and Test 2.

Pearson's r = _____

Spearman's rho = _____

Kendall's tau = _____

2. It looks like scores from Test 1 and Test 2 might have a linear relationship. In the top scatterplot displayed below, roughly sketch the line that you think best fits the data. Guess the slope and y-intercept of that line and write its equation here:

50 55

3. If we want to find the equation of the line that best fits the Test 1 and Test 2 data, we use something called the least-squares criterion (which we'll learn in Activity #13).

The line that best fits this data can be written as $Y = b_0 + b_1 X$, where $b_0 = y$ -intercept and $b_1 = slope$.

To calculate the regression line by hand, we use the following: $b_1 = r \frac{S_y}{S_x}$ and $b_o = \overline{Y} - b_1 \overline{X}$ where

r = Pearson's correlation coefficient, S_v = standard deviation of Y, S_x = standard deviation of X,

 \overline{Y} = mean of Y, and \overline{X} = mean of X. If we let X = Test #1 scores and Y = Test #2 scores, calculate the regression line for this data and sketch it on the scatterplot below.

Regression Line:

4. Use your regression line to predict the Test 2 score for a student who earned a score of 45 on Test 1. What's your prediction for a student scoring 15 on Test 1? For which prediction do you have more confidence?

Predicted Test 2 score for student with Test1 = 45:

Predicted Test 2 score for student with Test1 = 15:

In which prediction do you have more confidence? Why?

6. When I had Stata compute correlations for our data, this is the output I received:

	Test1	Test2	Test3
Test1 Test2	1.0000	1.0000	
Test3	0.7662	0.2626	1.0000

I then had Stata estimate the best-fitting line to predict Test 2 scores from Test 1 scores.

 Test2	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
Test1	.4772804	.1589839	3.00	0.008	.1418536	.8127072
_cons	23.74611	6.266479	3.79		10.525	36.96723

Use this output to verify your answers to questions 1 and 3. Interpret the slope and y-intercept values in this line. What do they represent?

Interpretation of slope in this example:	
Interpretation of y-intercept in this example:	

5. Soon, we'll also learn about the *coefficient of determination*, R². Calculate this coefficient for the Test 2 & Test 1 data by squaring your correlation coefficient. This coefficient can be interpreted in much the same way as we interpreted our eta-squared values in ANOVA. Go ahead and try to interpret your coefficient of determination.

 $\mathbf{R}^2 =$ ______. Interpretation of $\mathbf{R}^2 =$ ______