These methods require the assumptions of normality and equal variances

Question	Observe	Method	Distribution	Standard Error
Does a group average differ from a hypothesized value? Do cars on I-80 go faster than the 70 MPH speed limit?	X Average speed from a sample of n cars.	z-test (σ is known) t-test (σ is unknown)	If we repeatedly sample n observations and calculate \overline{X} , the distribution will approximate: Z or t-distribution with n-1 df	$\hat{\sigma}_{\overline{X}} = \frac{\sigma}{\sqrt{n}}$ $\hat{\sigma}_{\overline{X}} = \frac{s}{\sqrt{n}}$
Do two independent group means differ? Do male students write better essays than female students?	$\overline{X}_1 - \overline{X}_2$ Average essay rating for males and for females.	t-test	If we repeatedly sample n observations and calculate $\overline{X}_1 - \overline{X}_2$, the distribution will approximate: t-distribution with $n_1 + n_2 - 2$ df	$s_{pooled} = \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$
Do two dependent group means differ? (matched pairs) Do student scores increase from pretest to posttest?	$\overline{D} = \overline{X}_1 - \overline{X}_2$ Difference between avg. pre- and post-test scores.	t-test	If we repeatedly sample n observations and calculate \overline{D} , the distribution will approximate: t-distribution with n-1 df	$\hat{\sigma}_{\overline{D}} = \frac{s_D}{\sqrt{n}}$
Does a group proportion differ from a hypothesized value? Suppose the national smoking rate for men is 25%. Does the smoking rate for Iowa differ from the national percentage?	p = proportion Sample proportion of Iowans who smoke.	z-test	If we repeatedly sample n observations and calculate p, the distribution will approximate: Z distribution	$SE(p) = \sqrt{\frac{p(1-p)}{n}}$
Do two group proportions differ? Do more males or females vote Republican?	p = proportion Sample proportions of males and females who vote Republican	z-test	If we repeatedly sample n observations and calculate the difference in proportions, the distribution will approximate: Z distribution	$SE(\hat{p}_1 - \hat{p}_2) = \sqrt{\frac{n_1\hat{p}_1 + n_2\hat{p}_2}{n_1 + n_2}} \left(1 - \frac{n_1\hat{p}_1 + n_2\hat{p}_2}{n_1 + n_2}\right) \left(\frac{1}{n_1} + \frac{1}{n_2}\right)$

Question	Observe	Method	Distribution	Standard Error
Does a group variance differ from a hypothesized value? Is this new measurement procedure more precise than industry standards?	s ² Variance in measurement for the new procedure.	χ^2 -test	If we repeatedly sample n observations and calculate s^2 , the distribution will approximate a χ^2 distribution with n-1 df	$\chi^2 = \frac{\sigma_o^2}{(n-1)}$
Do two group variances differ? Do male and female students show the same amount of variation in reading ability?	$\frac{s_1^2}{s_2^2}$ Ratio of variance in male reading ability to variance in female reading ability.	F-test	If we repeatedly sample n observations and calculate $\frac{s_1^2}{s_2^2}$, the distribution will approximate an F-distribution with (n-1) degrees of freedom in both the numerator and denominator	
Do three or more group means differ? Which of three experimental drugs reduces cholesterol the most?	\overline{X}_1 , \overline{X}_2 , \overline{X}_3 Three group means.	ANOVA (F-test)		