These methods require the assumptions of normality and equal variances

Question	Observe	Method	Distribution	Standard Error
Does a group average differ from a hypothesized value? Do cars on I-80 go faster than the 70 MPH speed limit?	\bar{X} Average speed from a sample of n cars.	z-test (σ is known) t-test (σ is unknown)	If we repeatedly sample n observations and calculate \bar{X}, the distribution will approximate: Z or t -distribution with $\mathrm{n}-1 \mathrm{df}$	$\hat{\sigma}_{\bar{X}}=\frac{\sigma}{\sqrt{n}}$ $\hat{\sigma}_{\bar{X}}=\frac{s}{\sqrt{n}}$
Do two independent group means differ? Do male students write better essays than female students?	$\bar{X}_{1}-\bar{X}_{2}$ Average essay rating for males and for females.	t-test	If we repeatedly sample n observations and calculate $\bar{X}_{1}-\bar{X}_{2}$, the distribution will approximate: t-distribution with $n_{1}+n_{2}-2 \mathrm{df}$	$s_{\text {pooled }}=\sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}} \sqrt{\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}}$
Do two dependent group means differ? (matched pairs) Do student scores increase from pretest to posttest?	$\bar{D}=\bar{X}_{1}-\bar{X}_{2}$ Difference between avg. preand post-test scores.	t-test	If we repeatedly sample n observations and calculate \bar{D}, the distribution will approximate: t -distribution with $\mathrm{n}-1 \mathrm{df}$	$\hat{\sigma}_{\bar{D}}=\frac{s_{D}}{\sqrt{n}}$
Does a group proportion differ from a hypothesized value? Suppose the national smoking rate for men is 25%. Does the smoking rate for Iowa differ from the national percentage?	$\mathrm{p}=$ proportion Sample proportion of Iowans who smoke.	z-test	If we repeatedly sample n observations and calculate p, the distribution will approximate: Z distribution	$S E(p)=\sqrt{\frac{p(1-p)}{n}}$
Do two group proportions differ? Do more males or females vote Republican?	$\mathrm{p}=$ proportion Sample proportions of males and females who vote Republican	z-test	If we repeatedly sample n observations and calculate the difference in proportions, the distribution will approximate: Z distribution	$S E\left(\hat{p}_{1}-\hat{p}_{2}\right)=\sqrt{\frac{n_{1} \hat{p}_{1}+n_{2} \hat{p}_{2}}{n_{1}+n_{2}}\left(1-\frac{n_{1} \hat{p}_{1}+n_{2} \hat{p}_{2}}{n_{1}+n_{2}}\right)\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}$

| Question | Observe | Method | Distribution |
| :--- | :---: | :---: | :---: | :---: |
| Does a group variance differ
 from a hypothesized value?
 Is this new measurement
 procedure more precise than
 industry standards?
 Variance in measurement
 for the new procedure. | χ^{2}-test | | Standard Error |

