
Assignment #11:  Multiple Linear Regression 

At the end of each semester, you complete course evaluation surveys to provide feedback on your courses and 
instructors.  Results from those surveys are used to assess our teaching effectiveness. 

The use of these surveys as indicators of teaching effectiveness is often criticized1 since these evaluations may be 
biased by non-teaching-related factors, such as the gender, age, or race of the instructor2.   

In 2004, the University of Texas investigated the effect of 
physical appearance on course evaluations3.    Do more 
physically attractive instructors receive higher course evaluation 
scores?  If my evaluation scores are high, the answer is probably 
“yes,” but we’ll go ahead and analyze the dataset from this study. 

Researchers sampled 94 instructors and collected data on the 
courses they taught between the years 2000-02.  This led to a 
total of 463 course evaluations (with each instructor teaching 
between 1-3 courses).   

For each of the 463 course evaluations, the researchers collected 
data on 24 variables4: 

 prof_id = professor ID :  int  1 1 1 1 2 2 2 3 3 4 ... 
 course_eval = average course evaluation (1 = very unsatisfactory — 5 = excellent) : num  4.3 3.7 3.6 4.4 4.5 4 2.1 3.7 3.2 4.3 ... 
 prof_eval = average professor evaluation  (1 = very unsatisfactory — 5 = excellent) : num  4.7 4.1 3.9 4.8 4.6 4.3 2.8 4.1 3.4 4.5 ... 
 rank = rank of professor (teaching, tenure-track, tenured)  : Factor w/ 3 levels "teaching","tenure track",..: 2 2 2 2 3 3 3 3 3 3 ... 
 ethnicity = ethnicity of professor (minority, not minority)  : Factor w/ 2 levels "minority","not minority": 1 1 1 1 2 2 2 2 2 2 ... 
 gender = gender of professor (female, male) : Factor w/ 2 levels "female","male": 1 1 1 1 2 2 2 2 2 1 ... 
 language = language of school where professor received education (english, non-english) : Factor w/ 2 levels :  1 1 1 1 1 1 1 1 ... 
 age = age of professor : int  36 36 36 36 59 59 59 51 51 40 ... 
 cls_perc_eval = percent of students in class completing survey: num  55.8 68.8 60.8 62.6 85 ... 
 cls_did_eval = number of students in class completing survey : int  24 86 76 77 17 35 39 55 111 40 ... 
 cls_students = total number of students in class : int  43 125 125 123 20 40 44 55 195 46 ... 
 cls_level = class level (lower, upper)   : Factor w/ 2 levels "lower","upper": 2 2 2 2 2 2 2 2 2 2 ... 
 cls_profs = # of professors teaching sections in course  : Factor w/ 2 levels "multiple","single": 2 2 2 2 1 1 1 2 2 2 ... 
 cls_credits = # of credits of class (one credit, multi-credit)  : Factor w/ 2 levels "multi credit",..: 1 1 1 1 1 1 1 1 1 1 ... 
 bty_f1lower = beauty score of professor from lower-level female (1 = lowest, 10 = highest) : int  5 5 5 5 4 4 4 5 5 2 ... 
 bty_f1upper = beauty score of professor from upper-level female (1 = lowest, 10 = highest) : int  7 7 7 7 4 4 4 2 2 5 ... 
 bty_f2upper = beauty score of professor from 2nd upper-level female (1 = lowest, 10 = highest) : int  6 6 6 6 2 2 2 5 5 4 ... 
 bty_m1lower = beauty score of professor from lower-level male (1 = lowest, 10 = highest) : int  2 2 2 2 2 2 2 2 2 3 ... 
 bty_m1upper = beauty score of professor from upper-level male (1 = lowest, 10 = highest) : int  4 4 4 4 3 3 3 3 3 3 ... 
 bty_m2upper = beauty score of professor from 2nd upper-level male (1 = lowest, 10 = highest) : int  6 6 6 6 3 3 3 3 3 2 ... 
 bty_avg = average beauty score of professor : num  5 5 5 5 3 ... 
 pic_outfit = outfit of professor in picture (not formal, formal)  : Factor w/ 2 levels "formal","not formal": 2 2 2 2 2 2 2 2 2 2 ... 
 pic_color = color of professor’s picture (color, black&white)  : Factor w/ 2 levels "black&white",..: 2 2 2 2 2 2 2 2 2 2 ... 
 pic_full_dept = whether or not all members of professor’s department have photos available: Factor w/ 2 levels "no","yes": 2 2 2 … 
 class1 — class 30 = indicator for which of the classes with multiple professors the professor is teaching 

I standardized the beauty ratings (the variables in red) by converting them to z-scores and then added them together 
to form a single beauty variable called zbeauty.  I also standardized the course and professor evaluations (the variables 
in blue), added them together, and then standardized the composite evaluation score as zeval. 

1. https://theconversation.com/students-dont-know-whats-best-for-their-own-learning-33835 
2. http://sun.skidmore.union.edu/sunNET/ResourceFiles/Huston_Race_Gender_TeachingEvals.pdf 
3. https://stat.duke.edu/courses/Fall12/sta101.002/CourseRatings.pdf 
4. There were 54 variables in the full dataset, which you can download at:  http://www.bradthiessen.com/html5/data/eval.csv 

https://theconversation.com/students-dont-know-whats-best-for-their-own-learning-33835
http://sun.skidmore.union.edu/sunNET/ResourceFiles/Huston_Race_Gender_TeachingEvals.pdf
https://stat.duke.edu/courses/Fall12/sta101.002/CourseRatings.pdf
http://www.bradthiessen.com/html5/data/eval.csv


1. One condition of a regression analysis is that our data (or errors) are independent.  Think about the data in this study 
(463 evaluations from courses taught by 94 instructors).  We’ll pretend as though all 463 observations are 
independent, but explain why these observations are not independent. 

2. We want to investigate the extent to which an instructor’s physical appearance (zbeauty) predicts course evaluation 
scores (zeval).  To do this, let’s compare the following models: 

Interpret the slope of our full model: 

 0.19 represents:  ____________________________________________________________________________________ 

Interpret the R-squared value: 

 0.036 represents:  ___________________________________________________________________________________ 

Interpret the RMSE value for the full model: 

 0.9829 represents:  __________________________________________________________________________________ 

Use the R-squared value and sample size of n=463 to calculate the omnibus F-statistic to compare these models: 

 F =  ___________________________________________________________________________________ 

3. Complete an ANOVA summary table to compare the two models.  Remember the standard deviation of our Y 
variable is 1.0 (since we standardized the evaluation scores).  Your MSR (F-statistic) should be the same as the 
omnibus F-statistic you just calculated (and the same as what is reported under the full model on the previous page). 

Reduced Model:  Zeval = b0 

Least-squares line: y = 0 
R2 = 0; adjusted R2 = 0 
AIC = 1316.936 
RMSE = 1

Full Model:  Zeval = b0 + b1(Zbeauty) 

Least-squares line: y = 0 + 0.19x 
R2 = 0.036; adjusted R2 = 0.034 
AIC = 1301.923 
RMSE = 0.9829 
F = 17.26 (p = 0.000039)

Source SS df MS MSR (F)

Regression 
(b1 | b0) _______________ _________ ______________ ______________

Error _______________ _________ ______________ p = __________

Total _______________ _________ MStotal R2 = __________



4. What conclusions can we make from this comparison of our full and reduced models?  Does physical appearance 
predict course evaluation scores? 

 ____________________________________________________________________________________________________ 

5. Let’s investigate other models related to beauty 
and course evaluation scores.  To the right, I’ve 
plotted a correlogram showing the correlations 
among pairs of variables in our dataset. 

Blue boxes represent larger positive correlations, 
while red boxes represent larger negative correlations.  
I’ve used red arrows to highlight the evaluation and 
beauty variables we used in our previous full model.  
You can see these variables have a correlation of 0.19. 

The correlations can give us ideas for models to 
explore more in-depth.  For example, evaluation 
scores are correlated to gender (higher evaluations 
for males), cls_perc_eval (higher evaluations from 
classes with a higher percentage of students 
completing evaluations), beauty, language (lower 
evaluations for non-native-English speaking 
instructors).  Furthermore, it looks as though age and 
beauty have a negative correlation. 

Remember these correlations do not imply causation! 

6. The model we constructed indicates physical appearance predicts course evaluation scores slightly.  Would beauty 
still matter if we control for other variables, such as age, gender, and class size? 

Let’s build some nested models and compare them.  First, we’ll start by determining if gender predicts course 
evaluation scores.  To do this, we’ll compare a reduced model (with no predictors) to a gender model (with a 
predictor of gender).  Note that our gender variable has been coded so that 0 = female and 1 = male.  We’ll learn in 
the next activity that the method we’re going to use is exactly the same as the independent samples t-test you 
learned in a previous statistics course. 

Here’s some output from the gender model: 

Gender Model: Term Coefficient 95% Confidence interval p-value
R2 = 0.02001 (intercept) -0.1656438 -0.3051053 -0.02618226 0.0200
adj. R2 = 0.018 gendermale  0.2861682  0.1028618  0.46947454 0.0023
AIC = 1309.579
RMSE = 0.991
F = 9.412
p = 0.0023

From this output, we can conclude gender      IS      IS NOT a significant predictor of course evaluations. 



7. Let’s add age as a predictor to create a gender-age model.  Here’s the output from that model: 

Gender-Age Model: Term Coefficient 95% Confidence interval p-value
R2 = 0.03595 (intercept)  0.44023637 -0.01317048,  0.893643219 0.05701
adj. R2 = 0.03175 gendermale  0.36213731  0.17224907,  0.552025547 0.00022
RMSE = 0.984 age –0.01343644 -0.02301111, -0.003861774 0.00605
AIC = 1303.987
F = 8.576
p = 0.00022

Interpret the coefficient for the gender term: 

 0.362 represents:  ___________________________________________________________________________________ 

Interpret the R-squared value: 

 0.03595 represents:  _________________________________________________________________________________ 

Why can’t we simply compare the magnitude of the coefficients and conclude gender (coefficient = 0.36) is a more 
potent predictor of evaluations than age (coefficient of -0.013): 

_________________________________________________________________________________________________________ 

Use the R-squared values of 0.03595 and 0.02001 to calculate the omnibus F-statistic to compare the gender and 
gender-age models: 

 F =  ________________________________________________________________________________________________ 

8. I compared these models in R and obtained the following output.  Verify the F-statistic matches what you just 
calculated in the previous question.  What can we conclude from this?  Does age significantly predict course 
evaluation scores beyond gender? 

Model 1: zeval ~ gender
Model 2: zeval ~ gender + age
  Res.Df    RSS Df Sum of Sq      F   Pr(>F)   
1    461 452.76                                
2    460 445.39  1    7.3636 7.6051 0.006052 **

9. Calculate and interpret  Rage | gender
2 = ____________________



10. Let’s see if class size adds anything to our prediction.  I constructed the following gender-age-size model:  

Gender-Age-size: Term Coefficient 95% Confidence interval p-value
R2 = 0.03608 (intercept)  0.4500165509 -0.010087143  0.910120244 0.055217
adj. R2 = 0.02978 gendermale  0.3654872346  0.173654674  0.557319796 0.000204
RMSE = 0.985 age –0.0134997669 -0.023096688 -0.003902846 0.005934
AIC = 1305.921 cls_students  0.0001568858 -0.001367596  0.001053825 0.799110
F = 5.727
p = 0.0007459

Use the R-squared values of 0.03608 and 0.03595 to calculate the omnibus F-statistic to compare the gender-age 
and gender-age-size models: 

 F =  ________________________________________________________________________________________________ 

What can we conclude from this test?  Does class size predict course evaluation scores beyond gender and age? 

11. In question #2, we concluded that beauty does predict course evaluations.  Let’s see if beauty predicts evaluation 
scores after we control for the age and gender of the instructor.  

Take a look at the output for these two competing models: 

Gender-Age Model: Term Coefficient 95% Confidence interval p-value
R2 = 0.03595 (intercept)  0.44023637 -0.01317048,  0.893643219 0.05701
adj. R2 = 0.03175 gendermale  0.36213731  0.17224907,  0.552025547 0.00022
RMSE = 0.984 age –0.01343644 -0.02301111, -0.003861774 0.00605
F = 8.576
p = 0.00022
AIC = 1303.987

Gender-Age-beauty: Term Coefficient 95% Confidence interval p-value
R2 = 0.06903 (intercept)  0.161653055 -0.30453852 0.627844631 0.496
adj. R2 = 0.06294 gendermale  0.379821404  0.19281717 0.566825638 .00008
RMSE = 0.968 age –0.007888068 -0.01768662 0.001910483 0.114
F = 11.34 zbeauty  0.190751112  0.09793158 0.283570642 .00006
p = 0.00000034
AIC = 1289.82 

Compare the AIC values and identify which model you would choose.  Based on the following output, does beauty 
add to our prediction after controlling for age and gender?  

Model 1: zeval ~ gender + age
Model 2: zeval ~ gender + age + zbeauty
  Res.Df    RSS Df Sum of Sq     F    Pr(>F)    
1    460 445.39                                 
2    459 430.11  1    15.283 16.31 6.304e-05 ***



12. Take a look at the p-value for the age term in the gender-age-beauty model (p = 0.114, highlighted in a red font on 
the previous page).  Based on this, what can we conclude about the age predictor? 

13. Let’s see if removing the age predictor significantly hurts our prediction of course evaluation scores. 

When I fit both of these models, I find: 

Conduct an omnibus F-test to determine if removing age as a predictor significantly hurt our prediction of course 
evaluation scores. 

 F =  ________________________________________________________________________________________________ 

You can check your answer with the following output.  From this, what conclusion can you make? 

Model 1: zeval ~ gender + zbeauty
Model 2: zeval ~ gender + age + zbeauty
  Res.Df    RSS Df Sum of Sq      F Pr(>F)
1    460 432.46                           
2    459 430.11  1    2.3452 2.5027 0.1143

14. To the right, I’ve pasted plots of the 
residuals for a model that includes gender 
and beauty as predictors.  Based on these 
plots, the VIF, and the Durbin-Watson 
statistics, evaluate the assumptions 
necessary for multiple linear regression.  Do 
any assumptions (other than independence) 
worry you? 

> vif(noage)
  gender  zbeauty 
1.016423 1.016423 

> mean(vif(noage))
[1] 1.016423

> durbinWatsonTest(noage)
 lag Autocorrelation D-W Statistic p-value
   1        0.365388      1.267384       0
 Alternative hypothesis: rho != 0

Rgender, age, beauty
2 = 0.06903

Rgender, beauty
2 = 0.06395



15. Do you think there would be a significant interaction between beauty and gender?  To check, we could compare: 

Gender-beauty-int: Term Coefficient 95% Confidence interval p-value
R2 = 0.07337 (intercept) -0.1812859 -0.31859402 -0.04397773 0.009774
adj. R2 = 0.06732 gendermale  0.3344626  0.15428209  0.51464315 0.000295
RMSE = 0.9658 zbeauty  0.1050824 -0.02631720  0.23648206 0.116742
F = 12.11 gndr x zbeauty  0.1963916  0.01775254  0.37503074 0.031256
p = 0.00000012
AIC = 1287.654

Interpret the coefficient for the interaction term.  To do this, let’s first rewrite the regression model separately for 
males and females.  Substitute gender = 1 in the male formula and gender = 0 in the female formula.  Then simplify. 

Fill-in-the-blanks 

 Formula for males:  -0.181 + 0.334( ____ ) + 0.105(zbeauty) + 0.196( ____ x zbeauty) 

 Formula for females:  -0.181 + 0.334( ____ ) + 0.105(zbeauty) + 0.196( ____ x zbeauty) 

Rewrite the formulas (simplify the above formulas, combining like terms): 

 Formula for males:  __________________________________________________________ 

 Formula for females:  __________________________________________________________ 

Using those formulas (and the graph to the right), 
explain what the interaction term means for this 
dataset: 

__________________________________________________ 

__________________________________________________ 

__________________________________________________ 

__________________________________________________ 

Rgender, beauty
2 = 0.06395

Rgender, beauty, gender x beauty
2 = 0.07337



16. Remember we’ve been ignoring the fact that the 463 observations in our dataset are not independent.  We have 
instructors evaluated multiple times (and courses evaluated multiple times).   

A good way to deal with this dependence is to run a multi-level (nested) model in which instructors are nested 
within courses (or vice-versa).  I’m hoping a student or two will investigate multilevel models for their course 
projects. 

For now, let’s use a different (and much worse) method for dealing with the dependence.  Let’s just average the 
course evaluations for each instructor.  When we do this, we end up with 94 average instructor evaluation scores. 

Which predictors should we use to predict the average instructor evaluations?  Should we include beauty, age, 
and/or gender?  To investigate this, let’s use a cross-validation approach. 

Below, you can see the models I fit along with the average cross-validated mean square error for each: 

 Average C-V MSE Model 
 0.760 Evaluations = f(age) 
 0.735 Evaluations = f(gender) 
 0.735 Evaluations = f(beauty) 

 0.740 Evaluations = f(age, beauty) 
 0.733 Evaluations = f(gender, age) 
 0.698 Evaluations = f(gender, beauty) 

 0.701 Evaluations = f(gender, age, beauty) 

 0.754 Evaluations = f(gender, age, gender x age) 
 0.740 Evaluations = f(age, beauty, age x beauty) 
 0.705 Evaluations = f(gender, beauty, gender x beauty) 
 0.701 Evaluations = f(gender, age, beauty, gender x age, gender x beauty, age x beauty) 

The first group of models included a single predictor.  The second group included two predictors.  The third 
“group” was the model with all three predictors.  The final group included interaction terms. 

Based on these results, which model would you conclude is the “best” model to predict course evaluations? 

17. To the right, I’ve displayed results from a best subsets 
regression (a = age, g = gender, z = zbeauty).  Based on 
this, which model would you choose to predict instructor 
evaluations? 



18. To the right, I’ve displayed output using ridge 
regression (with a model that includes gender, 
age, and zbeauty).  Based on this plot, what can 
we conclude about the stability of our 
coefficient estimates? 

Assuming we have time, we’ll try a little team competition during our next class.  I’ll provide a dataset and have teams 
of students work to produce their best possible predictions.  Then, we’ll test our predictions on a new dataset to see 
whose model was actually best. 

We might also discuss this research report:  http://bradthiessen.com/html5/stats/m301/referee.pdf 


