
Lesson 10:  Simple linear regression Packages used: mosaic, ggvis, dplyr, broom 

Scenario: Can you predict the success of SAU students?  How would you define success?  What variables would predict success? 

source: 2013-14 MAP-Works data 

1. On each scatterplot, I plotted the line that best fits the data.  Evaluate how well each line describes the relationship 
between X and Y.    In which scatterplot does the line better fit the data? 

2. Interpret the slope and y-intercept of the scatterplot on the top-left. 

 slope:       y-intercept: 

3. Predict the average first-semester GPA of students with average high school GPAs of 3.50 and 1.50. 

Predicted first-semester GPA for hsGPA = 3.50:  _____________________________________________________________. 

Predicted first-semester GPA for hsGPA = 1.50:  _____________________________________________________________. 

I am more confident in my prediction for students with an average high school GPA of:          1.50       3.50 

X = 3.2354      Y = 2.6362
sx = 0.5435      sy = 0.7510
n = 508            rxy = 0.6784

X = 23.002      Y = 2.6362
sx = 3.6176      sy = 0.7510
n = 508            rxy = 0.4894

ŷ = −0.396+0.9372x

ŷ = 0.2993+0.1016x



To learn how we can find the best-fitting line, let’s use a small dataset of the relationship between media expenditures 
and number of bottles shipped for 6 beer brands: 

With this data, we can construct the model: 

The correlation indicates y is a linear function of x, so our function will have a slope (b1) and y-intercept (b0): 

Our goal will be to estimate the parameters (slope and y-intercept) of this model to evaluate how well the model fits 
the data. 

4. On the scatterplot displayed above, sketch the line you think best fits the data.  Estimate the parameters of that line. 

Y = ______________________ (x) + ______________________ 
        (slope)                             (y-intercept) 

5. Each student has a different line with different values for the slope and y-intercept.  How can we determine which 
student has the best line?  How can we evaluate how well that “best” line fits the data? 

Brand
Media Expenditures 

(millions of $)
Bottles Shipped 

(in millions)

Busch 8.7 8.1

Miller Genuine Draft 21.5 5.6

Bud Light 68.7 20.7

Coors Light 76.6 13.2

Miller Lite 100.1 15.9

Budweiser 120.0 36.3

mean 65.9333 16.6333

std. dev 43.5017 11.0471

correlation                  correlation:  r = 0.8288
Source:  Superbrands, 1998; 10/20/1997

bottles shipped = f media expenditures( )      or     y = f x( )+ e

y = f x  b0,  b1( )+ e
or
y = b0 +b1x+ e



Suppose 3 students sketched the following lines.  Which line is best?  What do the numbers in the tables represent? 

Observed Predicted error error2

Media (x) Shipped (y)

8.7 8.1 16.633 -8.53 72.761

21.5 5.6 16.633 -11.03 121.661

68.7 20.7 16.633 4.07 16.5649

76.6 13.2 16.633 -3.43 11.765

100.1 15.9 16.633 -0.73 0.533

120.0 36.3 16.633 19.67 386.909

Sum = 0 610.194

� y − ŷ( )�̂y �y − ŷ( )2y = 16.633 + 0x

Observed Predicted error error2

Media (x) Shipped (y)

8.7 8.1 2.675 5.43 29.485

21.5 5.6 5.875 -0.28 0.078

68.7 20.7 17.675 3.02 9.12

76.6 13.2 19.65 -6.45 41.603

100.1 15.9 25.525 -9.62 92.544

120.0 36.3 30.5 5.8 33.64

Sum = -2.1 206.47

� y − ŷ( )�̂y �y − ŷ( )2

Observed Predicted error error2

Media (x) Shipped (y)

8.7 8.1 4.58725 3.51 12.32

21.5 5.6 7.28165 -1.68 2.822

68.7 20.7 17.21725 3.48 12.11

76.6 13.2 18.8802 -5.68 32.262

100.1 15.9 23.82695 -7.93 62.885

120.0 36.3 28.0 8.28 68.558

Sum = -0.02 190.957

� y − ŷ( )�̂y �y − ŷ( )2y = 2.7559 + 0.2105x

y = 0.50 + 0.25x

Note: This would be our best 
prediction if we didn’t know anything 
about the relationship between media 
expenditures and bottles shipped.
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ŷ

(
)2

∑
=
1−

R2
(

)SS
Y
=
SS

Y
−
SS

re
g
=
19
1.
0

ŷ−
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6. The best-fitting line in this scenario is y = 2.7559 + 0.2105x.  Use that line to “predict” the number of bottles 
shipped by a company that spent $76.6 million on advertising.   

 Predicted number of bottles shipped = f(76.6) = _______________________________________________________ 

Coors Light spent $76.6 million on advertising and shipped 13.2 million bottles.  How far off was your prediction? 

 Prediction error = _______________________________________________________ 

7. No line – not even the best line – will fit the data with perfect accuracy.  There’s always some amount of random error 
(and, probably, measurement error). 

Why, then, wouldn’t we connect-the-dots to create our prediction model?  Why might we prefer an imperfect line to 
a perfect connect-the-dots model? 

# Input data
brand <- c("Busch", "MGD", "Bud Light", "Coors Light", "Miller Lite", "Budweiser")
media <- c(8.7, 21.5, 68.7, 76.6, 100.1, 120.0)
ship <- c(8.1, 5.6, 20.7, 13.2, 15.9, 36.3)

# Store all variables in beer data.frame and load ggvis package for scatterplot
beer <- data.frame(brand, media, ship)
library(ggvis)

# Scatterplot with best-fitting line and lowess curve
beer %>% 
  ggvis(x=~media, y=~ship, 
        fill := "steelblue", stroke:="steelblue", fillOpacity:=.9, strokeOpacity:=1) %>%
  layer_points(size:=100) %>%
  layer_model_predictions(model = "lm", strokeWidth:=3, stroke:="red") %>%
  layer_smooths(strokeWidth:=5, stroke:="red") %>%
  add_axis("x", title = "Media expenditures (millions of $)", grid=F) %>%
  scale_numeric("x", domain=c(0, 125), nice=FALSE, clamp=TRUE)  %>%
  add_axis("y", title = "Shipments (millions of bottles)", grid=F) %>%
  scale_numeric("y", domain=c(0, 40), nice=FALSE, clamp=TRUE)

# Construct linear model
model <- lm(ship~media, data=beer) # Construct linear model
model                              # Get slope and y-intercept
summary(model)                     # Print additional information about model
plot(model)      # Plots to evaluate conditions/assumptions
mplot(model)      # Plot confidence interval for parameter estimates
predict(model)      # Predict values of Y from the model

y = 2.7559 + 0.2105x



8. One criterion for the best line would be the line that minimizes the total amount of prediction error (the sum of the 
distances between the points and the line).  

If distances between points and the prediction line represent error, which distances (errors) are we interested in 
minimizing?  Do we want to minimize the horizontal, vertical, or perpendicular distances?  Why? 

 horizontal errors vertical errors perpendicular errors 
  least squares error-in-both-variables regression 
  assumes x values are “good” measures orthogonal (Deming) regression 
  or that we chose the x values “perpendicular” changes as units change 

9. If we want to predict Y for given values of X, we want to minimize the vertical errors.   Below, I drew these vertical 
errors for two potential best-fit lines.  I then calculated the total length of the lines to find the sum of these errors: 

Since the sum of the errors is smaller for the line on the left, that line better fits our data.  To find the absolute best 
line, all we need to do is find the sum of the errors for every possible line we could draw for our data. 

That could take forever, so let’s use some math to find the formula for the line that best fits a given dataset.   

To do this, let’s establish some notation: 

We want to find the line that minimizes the sum of those errors.  We want to minimize: 

The problem is that the positive errors will cancel out the negative errors.  If we find the sum of these values, the 
positive and negative errors will cancel each other out.  Also, the minimum of our criterion would approach -∞. 

prediction line

observed data
error

total error (sum of 
all line lengths)

xi ,  yi( )←  the coordinate of a data point
ŷi = b0 + b1xi + e←  our linear model
e = yi − ŷi( ) = yi − b0 + b1xi( ) = yi − b0 − b1xi ←  error 

yi − b0 − b1xi
i=1

n

∑



How can we deal with this issue?  How can we ensure all the errors are positive?   

We could take the absolute value of our errors.  We could minimize: 

This is the approach used in quantile regression (which we’ll learn about later in the semester).  One of the 
problems with absolute values is that they’re difficult to work with algebraically. 

Another approach would be to square each error.  We’d then want to minimize:  

This gives us a function we can minimize using Calculus.  It also has the bonus of magnifying outliers.  When we 
square large errors (outliers), those squared errors get huge. 

yi − b0 − b1xi
i=1

n

∑

yi − b0 − b1xi( )2
i=1

n

∑
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and y-intercept for this 
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these squared errors is 
minimized. 

(Chain Rule) 

(Chain Rule) 
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Derivation of least squares regression line
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So, the line that minimizes the sum of squared errors has the following slope and y-intercept parameters: 
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In our example, r = 0.829; sy = 43.5017; sx = 11.0471.  Using the mean values of X and Y, we can compute: 
 
   
 
 
 
 
 
 
Now that we can compute a regression line and interpret its coefficients, we need to find some way of measuring the accuracy of our 
prediction line.  We already know that the least-squares regression line is the line of best fit (it minimizes the sum of squared residuals 
(oftentimes called SSresidual or SSE)).  What we don’t know is whether or not that best-fitting line actually does a good job of fitting the 
data.  (For example, imagine a scatterplot of two uncorrelated variables.  The shape of the scatterplot would be a circle.  We could fit 
the least-squares line to the data, but it still wouldn’t fit the data very well.  
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10. We’re going to try out several measures of how well our regression line fits the data.  Let’s see if we can figure out 
the value of each measure under two situations:  (a) a model that fits perfectly, and (b) a model that doesn’t fit at all.  

Eventually, we’ll want to fill-in this table: 

11. One possible measure of how well a regression line fits the data is SSE (the sum of the squared vertical errors).  
What would SSE equal if the line fit the data perfectly?  

Now suppose we have uncorrelated variables – knowing the value of X would not tell us anything about the value 
of Y.  What would the least-squares regression line look like in this case?   

We’d need to find the value of m that would minimize the following: 

If you remember from a previous statistics class, this value is minimized when M equals the sample mean.   

Therefore, our best prediction for uncorrelated variables would be:  

That formula should look familiar.  That’s SStotal from ANOVA (or SSy, as we’ll refer to it in regression).  What’s the 
largest value we could possible get for SSE? 

Measure / Index Value for no fit

_______________

_______________

_______________

_______________ _______________

_______________ _______________

Later, we’ll investigate other measures of model fit, such as log-likelihood and Akaike’s AIC (an information criterion)
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12. The size of SSE depends on a few factors, such as the amount of variation in our data, the number of observations 
we have in our data, and the degree to which a line fits the data.  

It seems problematic that adding data would necessarily increase the size of SSE.  That would imply our line fits 
worse when we have a larger sample of data.  Perhaps it would be better to calculate the average squared error (or 
mean squared error).  This would give us the variance of the estimate: 

This variance of the estimate represents the average squared distance from each observation to the prediction line.   
In a situation with perfect fit, what would this measure equal?  Write that in the table on the previous page.  

With uncorrelated variables, what would be the maximum value of the variance of the estimate?   

13. Perhaps it would be better if our measure of good-fit was not in squared units.  We can fix that easily enough: 

Since this is simply the square root of the variance of the estimate, it’s easy to find the values under situations with 
perfect and no fit.  These values have been filled-in the table on the previous page. 

This measure is called the standard error of the estimate.  What does it represent?  Sketch a scatterplot and show 
what the standard error of the estimate would be visually. 

18) The first index of accuracy we may want to evaluate is SSE, the sum of squared residuals               .  To evaluate how well SSE 
serves as an index of accuracy, let’s calculate the maximum and minimum values of SSE. 

 
The minimum value of SSE would occur when every observed value of Y falls upon the prediction line.  If this is the case, there 
would be zero distance between each point and its predicted value.  Therefore, when we have a perfect prediction, SSE = 0. 
 
The maximum value of SSE would occur when we have uncorrelated variables (knowing the value of X would not tell us anything 
about the value of Y).  The scatterplot of uncorrelated variables would look like a circle: 

 
What would the least-squares regression line look like in this case?  Well, we 
always want to minimize the sum of squared residuals. 
 
Minimize:        where a represents the predicted value of Y. 
 
We know that this is minimized when a = the mean of Y (by definition, the mean is 
the value that minimizes the sum of squared deviations). 
 
Therefore, the maximum value of SSE (minimum prediction accuracy) is:  
 
  which we remember is called SSY or SSTOTAL in ANOVA. 
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(1) It varies with n (adding observations almost always increases SSE).  We’d like a per-observation index… 
 
 
       Variance of the estimate (variance of Y given X) 
 
 
 
 

(2) It’s expressed in squared units.     Standard error of estimate 
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14. The maximum value of each of our measures is still unbounded.  Ideally, the maximum value would be fixed. 

Suppose we took our total sums of squares (the variation in Y) and partitioned it.   
We know some of that variation is unexplained by our regression line, so we could calculate: 

Under the perfect-fit and no-fit scenarios, what would be the value of this ratio of error variance to total variance? 
Fill-in the table to show the values of this measure under perfect and no-fit situations. 

15. That measure seems backwards – it equals zero when we have perfect fit and 1 when we have no fit.   

Let’s invert that by taking: 

This is the coefficient of determination and it has the same interpretation as eta-squared in an ANOVA.   
Fill-in the table to show the values of this measure under perfect and no-fit situations. 

16. Perhaps the most popular (basic) measures of how well a line models a dataset are the coefficient of determination 
and the standard error of the estimate (a.k.a. the RMSE, the root mean squared error).  Identify an advantage of 
each measure. 

 Advantage of coefficient of determination: 

 Advantage of standard error of estimate: 

17. We’ve derived the least squares criterion and formulas to calculate the slope and y-intercept for that line of best fit.  
We’ve also derived some measures indicating how well that best-fitting line actually fits the data.  We still need to: 

a) Practice using technology to estimate these regression lines 
b) Figure out how to determine if a regression line fits the data “good enough” 
c) Investigate the assumptions we’re making when we estimate these least-squares regression lines. 

SSE
SSY

=
yi −Y( )2∑
yi − ŷ( )2∑

= 1− r2

r2 = R2 = SSY − SSE
SSY

=
SSreg
SSY

=
ŷ −Y( )2∑
yi − ŷ( )2∑



  

Call:
lm(formula = ship ~ media, data = beer)

Coefficients:
(Intercept)        media  
     2.7559       0.2105  

Call:
lm(formula = ship ~ media, data = beer)

Residuals:
     1      2      3      4      5      6 
 3.513 -1.681  3.484 -5.678 -7.925  8.287 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)  
(Intercept)  2.75591    5.46812   0.504   0.6408  
media        0.21048    0.07104   2.963   0.0414 *
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 6.911 on 4 degrees of freedom
Multiple R-squared:  0.6869, Adjusted R-squared:  0.6087 
F-statistic: 8.777 on 1 and 4 DF,  p-value: 0.04145

# The mosaic, ggvis, and broom packages have been loaded using
library(mosaic)
library(ggvis)
library(broom)

The beer dataset has been loaded into memory (variables = brand, media, and ship)

# Scatterplot with best-fitting line (using ggvis package)
beer %>% 
  ggvis(x=~media, y=~ship) %>%
  layer_points() %>%
  layer_model_predictions(model = "lm")

# To fit the linear model
model <- lm(ship~media, data=beer) # Construct linear model

# Get model coefficients
model                              # Get slope and y-intercept

summary(model)                     # Print additional information about model

mplot(model)      # Plots of model parameters and conditions



        1         2         3         4         5         6 
 4.587060  7.281159 17.215652 18.878416 23.824615 28.013098 

         term  estimate  std.error statistic    p.value
1 (Intercept) 2.7559140 5.46812498 0.5039962 0.64075738
2       media 0.2104765 0.07104337 2.9626483 0.04144535

[1] 0.04144535

  r.squared adj.r.squared    sigma statistic    p.value df    logLik      AIC      BIC deviance
1 0.6869445     0.6086806 6.910579  8.777285 0.04144535  2 -18.89556 43.79111 43.16639 191.0244
  df.residual
1           4

[1] 0.6869445

  ship media   .fitted  .se.fit    .resid      .hat   .sigma    .cooksd .std.resid
1  8.1   8.7  4.587060 4.948950  3.512940 0.5128581 7.431721 0.27923444  0.7283307
2  5.6  21.5  7.281159 4.233682 -1.681159 0.3753252 7.884584 0.02846155 -0.3077992
3 20.7  68.7 17.215652 2.828071  3.484348 0.1674756 7.669016 0.03071440  0.5525972
4 13.2  76.6 18.878416 2.921233 -5.678416 0.1786914 7.112538 0.08943068 -0.9066916
5 15.9 100.1 23.824615 3.721721 -7.924615 0.2900406 5.847202 0.37834613 -1.3609651
6 36.3 120.0 28.013098 4.765840  8.286902 0.4756090 4.474642 1.24355572  1.6559613

Analysis of Variance Table

Response: ship
          Df Sum Sq Mean Sq F value  Pr(>F)  
media      1 419.17  419.17  8.7773 0.04145 *
Residuals  4 191.02   47.76                  

                   2.5 %     97.5 %
(Intercept) -12.42603485 17.9378628
media         0.01322851  0.4077246

predict(model)      # Predict values of Y from the model

# Use the broom package to tidy up our model information
tidymodel <- tidy(model) # Store results from model in data.frame
tidymodel # Display tidy model

tidymodel$p.value[2] # Access the p-value for the media coefficient

glance(model) # Glance at model summary statistics

glance(model)$r.squared # Access R-squared value

augment(model) # Find predicted and residual values

anova(model) # ANOVA summary table for model

confint(model)      # Confidence intervals for model coefficients



18. The conditions of our linear regression model (in order from most to least important):   

• Validity: The data you are analyzing maps to the research question you are trying to answer. 
 Diagnosis:  Take a careful look at the purpose of your study and the data you’ve collected 
 How to fix:  Get better data 

• Additivity and linearity: The deterministic component of the model is a linear function of the predictors. 
 Diagnosis:  Look at plots of observed vs predicted or residuals vs predicted values.  The points should  
  be symmetrically distributed around a diagonal line in the former plot or around horizontal  
  line in the latter plot, with a roughly constant variance. 
 How to fix: You could transform your data (if it seems appropriate) or add a nonlinear component 

• Independent errors: No correlation among errors 
 Diagnosis:  If you have time series data, be careful that consecutive errors are not related. 

• Equal variance of errors (homoscedasticity): The variance in the errors is the same across all levels of X. 
 Diagnosis:  Look at the plot of residuals vs predicted values.  If the residuals grow larger as a function of  
  X, you have a problem. 

• Normality of errors 
 Diagnosis:  Look at a P-P or Q-Q plot of the residuals.  The residuals should fall near the diagonal line.   
  You could also run a test for normality, like the Shapiro-Wilk or Kologorov-Smirnov tests.   
  Note that the dependent and independent variables in a regression model do not need to  
  be normally distributed by themselves--only the prediction errors need to be normally  
  distributed 

Evaluate these conditions based on the following plots: 



19. In the R output, you’ll notice confidence intervals, p-values, and 
an ANOVA summary table.  To learn what these are all about, 
let’s go back to our scenario of predicting first semester GPAs 
based on high school GPAs. 

The scatterplot is, once again, displayed to the right.   
You can download this data at: 
http://www.bradthiessen.com/html5/data/actgpa.csv 

From the output displayed below, write out and interpret the 
coefficients and R-squared value for the linear model. 

Call:
lm(formula = fallGPA ~ hsGPA, data = actgpa)

Residuals:
     Min       1Q   Median       3Q      Max 
-3.06226 -0.27925  0.08677  0.33371  1.27793 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) -0.39601    0.14801  -2.675   0.0077 ** 
hsGPA        0.93720    0.04512  20.773   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.5523 on 506 degrees of freedom
Multiple R-squared:  0.4603, Adjusted R-squared:  0.4592 
F-statistic: 431.5 on 1 and 506 DF,  p-value: < 2.2e-16

20. In the last lesson, we saw that we always expect to get a non-zero correlation coefficient in a sample of data (even 
when we expect the variables to be uncorrelated in the population).  We expect the same thing with slopes of 
regression lines.   

Even if first semester GPAs have no relationship with high school GPAs, we expect to calculate a non-zero slope for 
our best-fitting line.  The slope of the regression line from our data was estimated to be 0.9372.  Does this slope 
imply our variables have a relationship for our population of interest or does this slope arise from random variation 
in our sample data? 

Another way of asking this question is:  How unlikely were we to observe a slope of 0.9372 or greater if the data 
were uncorrelated? 

Explain how we’re going to estimate this likelihood using randomization-based methods. 

X = 3.2354      Y = 2.6362
sx = 0.5435      sy = 0.7510
n = 508            rxy = 0.6784

gpa.model <- lm(fallGPA ~ hsGPA, data=actgpa) # Construct linear model
gpa.model

http://www.bradthiessen.com/html5/data/actgpa.csv


21. Let’s assume there is no relationship between high school and first semester GPAs.  If that was the case, then any 
high school GPA in our sample data could be associated with any first semester GPA.  Someone with a 4.00 high 
school GPA would be just as likely to have a 3.50 first semester GPA as they would a 0.83 first semester GPA. 

With this logic, we can randomize the values of one variable (high school GPA) while holding the other variable 
constant.  Then, with this randomized sample, we can calculate the slope of our regression line.  We can repeat this 
process many times, yielding many randomization-based estimates of our slope parameter. 

Let’s take a look at a few randomizations: 

 Actual data Randomization #1 Randomization #2 
 slope = 0.9372 slope = –0.03754 slope = 0.008652 

If we repeat this process 10,000 times, we can estimate our randomization distribution of slopes: 

Based on this histogram, estimate the p-value and state your conclusion. 

test.slope <- 0.9372 # Store our observed slope as “test.slope”
rand.slopes <- do(10000) * lm(fallGPA ~ shuffle(hsGPA), data=actgpa) # 10,000 randomizations

# Histogram with p-value
histogram(~hsGPA., data=rand.slopes,
          xlab="Possible slopes assuming null hypothesis is true", 
          groups=hsGPA. >= test.slope,   # Highlight values > test statistic
          main=paste("p-value = ", prop(~hsGPA. >= test.slope, data=rand.slopes)))
ladd(panel.abline(v=test.slope))   # Add vertical line at test statistic



22. We can also construct a bootstrap confidence interval for the slope of our regression line.  Explain the bootstrap 
process and interpret this interval: 

      low        hi central.p 
0.8440269 1.0308139 0.9500000 

23. You’ll practice using randomization-based tests and constructing bootstrap confidence intervals for the slopes of 
linear models in the assignment associated with this lesson.  For now, let’s move on to theory-based tests we can 
use to evaluate the fit of a model to a given dataset. 

When fitting linear models, we may be interested in finding the most parsimonious model that can explain enough 
of the relationship between the variables.  To find the best model, we might compare several different models, 
each increasing in complexity (nested models).  For example: 

a) We could start with the most basic model that predicts the same value for Y regardless of X.  All variation in 
observed Y values would be modeled by random error:                      .  What value would we choose for b0? 

b) We could then add one predictor to the model to create:                                 .  We could compare the 
performance of this model to the previous model to determine if the improvement in prediction justified the 
additional complexity of adding the predictor. 

c) We could then add yet another predictor:                                             .  Once again, we could compare this model 
to the previous model.  If this new model provided a significantly better prediction (explained a significant 
amount of previously unexplained variance), then we could decide to keep this new model.  If the model didn’t 
improve our prediction by very much, we might decide to keep the previous, simpler model. 

At each stage in building our regression model, we can assess the value of adding predictors (complexity) through 
randomization-based or parametric hypothesis testing methods.  These methods can help us determine which 
predictors to keep in our model. 

We could also work through this process backwards.  We could start with a relatively complex model, take away the 
predictor that explains the lease amount of variance in Y, and determine if the simpler model was significantly 
worse than the more complex model.   

bstrap <- do(10000) * lm(fallGPA ~ hsGPA, data=resample(actgpa)) # 10,000 bootstrap samples

densityplot(~hsGPA, data=bstrap, plot.points = FALSE, col="steelblue", lwd=4) # Plot distribution

cdata(0.95, hsGPA, data = bstrap) # Get 95% CI

ŷi = b0 + ei

ŷi = b0 + b1x1 + ei

ŷi = b0 + b1x1 + b2x2 + ei



24. When comparing models, it’s helpful to write out the full model (more complex model) and the reduced model.  
When you’re analyzing your own data, you’ll choose these models based on your experience with the data or area 
of study).  For now, I’ll force us to choose specific models. 

We’ll work one last time with the beer data set.  I want to know if X (media expenditures) predicts Y (bottles 
shipped) better than a model with no predictors.  Write out our full and reduced models: 

 Full model:  _________________________________ Reduced model:  _________________________________ 

25. As we’ve already seen, the sample mean minimizes the sum of squared errors (if we have no predictor variables).  
Therefore, what does SSE represent in our reduced model? 

Our full model is the least-squares regression line (using one predictor variable).  As you can see below, the full 
model reduced our error variance by 610.193 – 191.025 = 419.168.  What does this value represent?   

26. Fill-in these SSy and SSE values in the ANOVA summary table.  How many degrees of freedom will we have? 

Complete the ANOVA summary table and estimate a p-value.  What conclusion could we make?  Remember, you 
can always use the F-distribution applet at:  http://lock5stat.com/statkey/theoretical_distribution/theoretical_distribution.html#F 

Observed Reduced Model Full Model
Media (x) Shipped (y) predicted error error2 predicted error error2

8.7 8.1 16.633 -8.533 72.812 4.587 3.513 12.339
21.5 5.6 16.633 -11.033 121.727 7.282 -1.682 2.828
68.7 20.7 16.633 4.067 16.541 17.217 3.483 12.130
76.6 13.2 16.633 -3.433 11.785 18.880 -5.680 32.265

100.1 15.9 16.633 -0.733 0.537 23.827 -7.927 62.837
120.0 36.3 16.633 19.667 386.791 28.016 8.284 68.626

Sum 610.193 Sum 191.025

Source of variation SS df MS MSR (F)

Regression 
(b1 | b0) _______________ ____________ ______________ ______________

Error _______________ ____________ ____________ (blank)

Total _______________ ____________ MStotal R2 = __________

http://lock5stat.com/statkey/theoretical_distribution/theoretical_distribution.html#F


27. The only difference between our full and reduced models is the b1 coefficient (the slope).  If b1 = 0, the full model 
would be the same as our reduced model.  Another way, then, to compare our full and reduced models would be 
to test the hypothesis:  H0:  b1 = 0.  We can test this hypothesis with a t-test. 

What did that derivation just show?  Conduct this t-test and state an appropriate conclusion.   
Compare the value of your t-statistic to the value of the MSE you calculated for the ANOVA. 

28. This time, conduct a test of the hypothesis:  H0:  rxy = 0. 

29. A test for the slope of a regression line is the same as a test for the correlation between x and y.  So why do we use 
an ANOVA to compare our full and reduced models?  Follow along: 

tn−2 =
(observed value)− (hypothesized value)

standard error
= b̂1 − 0
SEb1

=

tn−2 =
b̂1 − 0
SEb1

= b̂1

sy|x
sx n −1

=
rxy
sy
sx

sy 1− r2 n −1
n − 2

sx n −1

=
rxy
sy
sx
sx n −1

sy 1− r2 n −1
n − 2

=
rxy n −1

1− r2 n −1
n − 2

tn−2 =
rxy

2 n −1( )
1− r2( ) n −1

n − 2
⎛
⎝⎜

⎞
⎠⎟
=

rxy
2 n − 2( )
1− r2( ) =

rxy n − 2

1− r2
=
rxy − 0

1− r2

n − 2

=
rxy − 0
SErxy

F = MSR =
MSreg
MSE

=
SSreg / dfreg
SSE / dfE

=
SSreg dfE( )
SSE dfreg( ) =

r2SSY n − 2( )
1− r2( )SSY 1( ) =

r2 n − 2( )
1− r2( ) = tn−2

2



30. It can also be shown that we can calculate our omnibus F-statistic with the following: 

Verify this formula gives us the same value for our MSR (as the ANOVA table in question #26).   

Notes:  The p-value from this test should be similar to a p-value we could get via randomization-based methods. 
Notice that to compare two nested models, we’re really just comparing their R-squared values. 

 
To construct an ANOVA summary table to compare two competing models, we can use the ANOVA() command in R: 

Analysis of Variance Table
Response: ship
          Df Sum Sq Mean Sq F value  Pr(>F)  
media      1 419.17  419.17  8.7773 0.04145 *
Residuals  4 191.02   47.76                  

 

Analysis of Variance Table
Model 1: ship ~ 1
Model 2: ship ~ media
  Res.Df    RSS Df Sum of Sq      F  Pr(>F)  
1      5 610.19                              
2      4 191.02  1    419.17 8.7773 0.04145 *

F =
Rfull
2 − Rreduced

2( ) kfull − kreduced( )
1− Rfull

2( ) N − kfull −1( )

# Using the beer data.frame
fullmodel <- lm(ship ~ media, data=beer) # Fit the full model with 1 predictor
anova(fullmodel) # ANOVA summary table as displayed in question #26

# We could also compare competing models
reducedmodel <- lm(ship ~ 1, data=beer) # Fit the reduced model with no predictors
anova(reducedmodel, fullmodel) # ANOVA summary table as displayed in question #26



31. There are other measures (beyond R-squared) that allow us to evaluate and compare regression models: 

Likelihood: The likelihood of a model is the probability it produces our data given its parameter estimates.  If we 
assume all our observations are independent, then we can write our likelihood function as: 

Oftentimes, the natural log of the likelihood is used (rather than the likelihood itself) because it’s easier to 
work with.  The log likelihood will always be negative, with values closer to zero indicating better model fit. 

To compare a full and reduced model, we can calculate the log-likelihood of each model.  We know the 
reduced model will fit worse, so its log-likelihood will be smaller.  To compare the log-likelihoods, we can 
take the likelihood ratio: 

If this likelihood ratio is large, it means the full model provides a much better fit than the reduced model. 
 
To make this likelihood ratio useful, we only need to know its distribution.  With large samples, the 
likelihood ratio is distributed as a chi-square distribution with  

AIC: Akaike’s an information criterion (derived from Kullback-Leibler information theory) provides another measure 
that can help you select the “best” model from a set of competing models.  It’s a criterion that seeks to find the 
model that has a good fit to the data with relatively few parameters (predictors).  It’s defined as: 

where b = the number of coefficients estimated in our model (slope(s) and intercept) and p = the number of 
predictors in our model.  When comparing models, we prefer the model that produces the smaller AIC value.  To 
obtain the AIC values in R, we can use the AIC(model) command. 

             df      AIC
reducedmodel  2 48.75936
fullmodel     3 43.79111

L Y | b0,b1,σ ei
2( ) = P

i=1

n

∏ yi | b0,b1,σ ei
2( )∝ exp

− yi −b0 −b1xi( )2
i=1

n

∑
2σ 2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

/σ n

LR = −2 ln
L reduced( )
L full( )

= 2 ln Lfull( )− ln Lreduced( )⎡⎣ ⎤⎦

df = dffull −dfreduced

# Using the beer data.frame
fullmodel <- lm(ship ~ media, data=beer) # Fit the full model with 1 predictor
reducedmodel <- lm(ship ~ 1, data=beer) # Fit the reduced model with no predictors

logLik(fullmodel) # Calculate log-likelihood of full model (-18.89556) 
logLik(reducedmodel) # Calculate log-likelihood of reduced model (-22.3797)

2 * (logLik(fullmodel) - logLik(reducedmodel)) # Calculate likelihood ratio (6.968 in this example)
pchisq(6.968, df=1, lower.tail=FALSE) # Yields p-value

# We could do all of this with one command if we load the lmtest package
library(lmtest) # Load the lmtest package
lrtest(reducedmodel, fullmodel) # Get likelihood ratio test with p-value (p=0.0083)

AIC = −2 ln Lmodel( )+2 b+1( ) = n ln 2π( )+1+ ln SSE
n

⎛

⎝
⎜

⎞

⎠
⎟

⎡
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⎢

⎤

⎦
⎥+2 b+1( )∝ n ln SSE

n
⎛

⎝
⎜

⎞

⎠
⎟+2p

AIC(reducedmodel, fullmodel) # Calculate AIC for each model

AIC = −2 −18.89556( )+2 2+1( ) = 6 ln 2π( )+1+ ln 191.0244
6

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥+2 2+1( ) = 43.79111



32. Our goal is to determine whether neural activity increases as the number of years playing the violin increases.  
Suppose we decide to conduct an ANOVA.   How would we do this?  What conclusions could we draw? 

33. We want to determine if the years variable predicts or explains the neural variable.  Write our competing models: 

 Full model:  _________________________________ Reduced model:  _________________________________ 

Scenario: Certain activities can affect the reorganization of the human central nervous system. 

 In one study, psychologists used magnetic source imaging (MSI) to measure neuronal activity in the brains 
of 9 violin players and 6 controls (those who have never played a stringed musical instrument) when the 
fingers on their left hands were exposed to mild stimulation.  The researchers felt that stringed instrument 
players, who use the fingers on their left hand extensively, might show an increased amount of neuron 
activity.  Shown below is a neuron activity index from the MSI along with the number of years each 
individual had been playing a stringed instrument: 

Data: http://www.bradthiessen.com/html5/data/violin.csv 

Subject Years played Neural activity
1 0 5.0
2 0 6.0
3 0 7.5
4 0 9.0
5 0 9.5
6 0 11.0
7 5 16.0
8 6 16.5
9 8 11.5

10 10 16.0
11 12 25.0
12 13 25.5
13 17 25.5
14 18 23.0
15 19 26.5

mean 7.2 15.56667
std. dev 7.24273 7.782459

                 correlation:  r = 0.928
Elbert, T., “Increased cortical representation of 
the fingers of the left hand in string players,” 
Science, 270, 13 October, 305-307

http://www.bradthiessen.com/html5/data/violin.csv


 

Residuals:
    Min      1Q  Median      3Q     Max 
-4.8644 -2.3730  0.1614  2.3713  4.6471 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   8.3873     1.1149   7.523 4.35e-06 ***
years         0.9971     0.1110   8.980 6.18e-07 ***

Residual standard error: 3.009 on 13 degrees of freedom
Multiple R-squared:  0.8612, Adjusted R-squared:  0.8505 
F-statistic: 80.63 on 1 and 13 DF,  p-value: 6.178e-07

Analysis of Variance Table

Response: neural
          Df Sum Sq Mean Sq F value    Pr(>F)    
years      1 730.21  730.21  80.633 6.178e-07 ***
Residuals 13 117.73    9.06       

34. Interpret that output.  Then, fill-in the following ANOVA summary table and verify the calculations.  What 
conclusions can we make? 

35. Replicate that MSR by calculating the omnibus F-statistic. 

36. Explain what the following plots indicate 
with regards to the assumptions underlying 
linear regression. 

violin <- read.csv("http://www.bradthiessen.com/html5/data/violin.csv") # Load data
model <- lm(neural ~ years, data=violin) # Fit the linear model
summary(model) # Summarize model

anova(model) # ANOVA summary table

Source of variation SS df MS MSR (F)

Regression 
(b1 | b0) _______________ ______________ ______________ _______________

Error _______________ ______________ ______________ (blank)

Total _______________ ______________ MStotal R2 = __________



Scenario: Some occupations are more prestigious than others (inspiring more respect or admiration).  For example, 
most people would agree that a heart surgeon has a more prestigious occupation than a waitress.  We’re 
going to examine some factors that may influence the prestige of various occupations. 

 Data:  http://www.bradthiessen.com/html5/data/prestige.csv 
 Source:  Canada (1971).  Census of Canada.  Vol. 3, Part 6.  Statistics Canada, 19-21. 

 prestige: Pineo-Porter Prestige score (a survey) 
 education: average years of education for people in that occupation 
 income: average income (1971 Canadian dollars) for people in that occupation 
 percwomn: % of workers in that occupation who are female 
 type: 0=blue collar, 1=white collar, 2=professional/technical/managerial 

Correlations:
             | education  income   %women prestige
-------------+------------------------------------
   education |   1.0000
      income |   0.5776   1.0000
      %women |   0.0619  -0.4411   1.0000
    prestige |   0.8502   0.7149  -0.1183   1.0000

http://www.bradthiessen.com/html5/data/prestige.csv


37. Before attempting to model prestige, I wanted to know if the 3 occupation types differed in prestige.  Interpret 
these results: 

  occ_type  n     mean        sd
1        0 49 36.08571 11.347320
2        1 23 42.24348  9.515816
3        2 30 67.90667  8.819255

Pairwise comparisons (Bonferroni)
  0       1      
1 0.059   -      
2 < 2e-16 4.4e-14 Bartlett test of homogeneity of variances

data:  prestige by occ_type
Bartlett's K-squared = 2.4469, df = 2, p= 0.2942

38. The relationship between prestige and income is displayed below.  Interpret the coefficients of our model (which 
you could verify using the summary statistics on the previous page). 

When I conducted this regression analysis in R, it gave me the 
following output: 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) 27.141176  2.268e+00   11.97   <2e-16 ***
income      0.0028968  2.833e-04   10.22   <2e-16 ***

Interpret those p-values and the R-squared value. 

39. Write out the full and reduced models.  Complete the ANOVA summary table.  How did we already know the MSR? 

 Full model:  _________________________________ Reduced model:  _________________________________ 

  

Source SS df MS MSR (F)

Type 17796 2 9733.576 92.40

Error 12100 99 105.336 p = 2.2 x 10-16

Total 29896 101 MStotal η2 =0.5953

y = 27.141 + 0.002896x
R2 = 0.5111

Source of variation SS df MS MSR (F)

Regression 
(b1 | b0) 15279 ____________ 15279 104.54

Error 14616 ____________ 146.16 (blank)

Total 29895 ____________
MStotal R2 = 0.5111



40. Calculate and interpret the RMSE (root mean square error).  What does it mean in this study? 

41. Use the omnibus F-test to verify the F-statistic from the ANOVA summary table on the previous page. 

42. With our least-squares regression line, we could predict the prestige of a job with an average income of $7000: 

  
We know that prediction won’t be perfectly accurate, so it might make sense to construct a confidence interval for 
our regression coefficients.  Using R, I found the following confidence intervals: 

                   2.5 %       97.5 %
(Intercept) 22.642116976 31.640235760
income       0.002334692  0.003458907

Interpret the 95% confidence interval for the slope of our regression line:  (0.00233, 0.00345).  Why does this not 
mean we’re 95% confident that increasing an occupation’s income by $1000 will be associated with a 2.33 – 3.45 
increase in prestige. 

We could use bootstrap methods or the following formula to construct a confidence interval for our regression 
line: 

A 95% confidence interval for the average prestige of all occupations with $7000 incomes is, then: 

y = 27.141 + 0.002896(7000) = 47.41877

ŷ ± tn−2
α /2( )sy|x 1

n
+
x0 − X( )2
n −1( )sx2

where

sy|x =
yi −Y( )2
n − 2( ) = SSE

n − 2
=

1− R2( )SSY
n − 2

=
1− R2( ) n −1( )sy2

n − 2
= sy 1− R

2 n −1
n − 2

= MSE

sy|x = 146.16 = 12.089

47.41877 ± 1.984( ) 12.089( ) 1
102

+
7000 − 6797.90( )2
102 − 2( ) 4245.92( )2

= 47.41877 ± 2.38



43. Will this confidence interval have the same width (uncertainty) for 
all values of income?  Explain. 

The confidence interval is displayed on the plot to the right. 

44. Based on our interpretation, this confidence interval didn’t give us exactly what we wanted.  We wanted an interval 
to predict the prestige of a single occupation that has a $7000 income.  The interval we calculated predicts the 
average prestige all occupations with $7000 incomes.   

If we construct an interval to predict a single future observation, that interval must be   WIDER       MORE NARROW  
than our confidence interval. 

To construct a prediction interval for our regression line, we use: 

  

The prediction interval is displayed to the right. 

Obtaining confidence or prediction intervals in R is easy.  Once you’ve specified your model, you apply the interval 
to new data using:  

predict(model, newdata, interval="confidence") predict(model, newdata, interval="predict")

The output, when our new data is a job with an income of $7000, is: 

     fit      lwr      upr      fit      lwr      upr
47.41877 45.04112 49.79642 47.41877 23.31552 71.52202

ŷi ± tn−2
α /2( )sy|x 1+ 1n +

x0 − X( )2
n −1( )sx2

47.41877 ± 1.984( ) 12.09( ) 1+ 1
102

+
7000 − 6797.90( )2
102 −1( ) 4245.92( )2

47.41877 ± 24.10



45. Recall the assumptions underlying regression.  The 
diagram to the right attempts to display many of these 
assumptions. 

Below, I’ve pasted output from the plots(model) 
command in R.  Interpret these graphs and evaluate 
whether the assumptions appear to be satisfied in this 
case. 

Non-constant error variance test: 
Variance formula: ~ fitted.values 
Chisquare = 3.088455  Df = 1   p = 0.07885 

46. If we’re worried about the normality and/or heteroscedasticity of our residuals, we have a few options.   

a) We could transform our dependent variable to make it better approximate a normal distribution.  Here’s the 
distribution of our prestige data: 

The figure on the next page displays the distributions we would get if we were to transform the prestige data 
using logarithms, exponents, or other transformations. 



If a transformation makes the data better approximate a normal distribution, it may mean the residuals will 
better approximate a normal distribution.  Be careful with this, though.  Once you transform the data, your linear 
model may become much more difficult to interpret. 

To learn more about transformations, check out http://onlinestatbook.com/2/transformations/tukey.html 
or http://onlinestatbook.com/2/transformations/box-cox.html 

b) You could use robust regression methods (as we’ll learn in a future activity).  Interpret the following: 

            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 27.141176  2.268e+00   11.97   <2e-16 ***
income      0.0028968  2.833e-04   10.22   <2e-16 ***

Robust linear regression                               Number of obs =     102
                                                       F(  1,   100) =   48.28
                                                       Prob > F      =  0.0000
                                                       R-squared     =  0.5111
                                                       Root MSE      =   12.09
------------------------------------------------------------------------------
             |               Robust
    prestige |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      income |   .0028968   .0004169     6.95   0.000     .0020697    .0037239
       _cons |   27.14118   2.886142     9.40   0.000     21.41515     32.8672
------------------------------------------------------------------------------

Quantile (Median) regression                         Number of obs =       102
  Raw sum of deviations     1447 (about 43.5)
  Min sum of deviations 954.6664                     Pseudo R2     =    0.3402
------------------------------------------------------------------------------
    prestige |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      income |   .0030293   .0003073     9.86   0.000     .0024196    .0036391
       _cons |   23.94584   2.518318     9.51   0.000     18.94957    28.94211
------------------------------------------------------------------------------
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c) You might also want to try to fit a model that isn’t linear.  We’ll also learn some of these methods in the future. 

   

 Best-fitting quadratic function: 

 Below:  Residuals vs. fitted plot: 

 Lowess (locally locally weighted scatterplot smoothing): 

Model:  y = b0 + b1x1 + b2x1
2 + e

y = 14.183+ 0.00615x − 0.000000143x2


