Lesson 11: Multiple regression & Model Selection Packages used: mosaic, ggvis, dplyr, leaps, car, DAAG, MASS, genridge

Scenario: Recall our prestige dataset: http://www.bradthiessen.com/html|5/data/prestige.csv
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Source: Canada (1971). Census of Canada. Vol. 3, Part 6. Statistics Canada, 19-21.

1. In the previous lesson, we modeled prestige as a function of income. Suppose we wanted to know whether
education, income, or %women best predicts prestige. We might decide to evaluate three models:

Model: prestige = bg + bi(income) Model: prestige = by + bs(education) Model: prestige = bg + b1(% women)
Least-squares line: y = 27.14 + 0.003x Least-squares line: y =-10.7 + 5.36x Least-squares line: y = 48.7 - 0.06x
RZ2=0.5111 R2=0.7228 R2=0.014

AIC =801.88 AIC =744.01 AIC = 873.43

RMSE = 12.09 RMSE =9.10 RMSE =17.17

F=104.54 (p < 0.00001) F=260.75 (p < 0.00001) F=1.42(p =0.2362)
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2. The R? values from those 3 models sum to 1.2479. How is that possible?

3. If you had to select a single predictor of prestige, which predictor (income, education, %women) would you choose?


http://www.bradthiessen.com/html5/data/prestige.csv

4. In the previous lesson, we conduct an F-test to compare a model with no predictors to a model with the income
predictor. That F-test indicated the full model with income as a predictor was better than the reduced model.

Can we extend this process by adding a second predictor? With a single independent variable, we visualize our
regression model as a line through a 2-dimensional scatterplot of data. With 2 predictors, we're fitting a 2-
dimensional plane to a 3-dimensional scatterplot.

Write out the models to determine if the combination of income and education provides a better prediction of
prestige than a model with no predictors:

Full model: Reduced model:

5. In the previous lesson, we derived simple formulas to calculate the slope and y-intercept of the least-squares line.
How do we estimate the coefficients for the best-fitting plane (with 2 predictors) or hyperplane (with 3+ predictors)?

We can use some simple matrix algebra to find the coefficients that minimize the sum of squared errors. Suppose
we have n observations in our dataset, with p predictors in our full model. Our full model, then, in matrix notation is:

Y=Xb+e
L ox, x, Xip
Vi b, €
Y, Lo, X, - X%, b, e,
= . +
yn bp en
1 Xt a2 X

-1
If linear algebra were a prerequisite for this course, we could show the least-squares solution is: b = (XTX) X'y

Let's have R estimate the parameters for our full and reduced models:

reducedmodel <- 1lm(prestige ~ 1, data = prestige)

fullmodel <- lm(prestige ~ income + education, data = prestige)
coef (reducedmodel)

coef (fullmodel)

Interpret the coefficients:

Reduced: y=Y =46.833

Full: §=—6.8478+0.0014x, +4.1374x,
Full: y=-6.8478+0.0014 (income)+4.1374 (education)

From the coefficients, can we determine which variable (income or education) is the better predictor of prestige?


http://www.stat.purdue.edu/~jennings/stat514/stat512notes/topic3.pdf

6. To compare these models with our omnibus F-test, we need to know R? for each model.

We know R? = 0 for the reduced model (since it has no predictors), but how do we calculate R? for the full model?
What does it mean to have a correlation among more than two variables?

Suppose we calculate the correlation between two variables: X and Y. We already know we find the least squares
regression line that linearly transforms the X values into predicted Y values. Since linear transformations have no
impact on correlation coefficients, the correlation between X and Y can be interpreted as the correlation between
the observed and predicted Y values.

With this logic, we can calculate R with multiple predictors — we simply need to calculate the correlation between
our observed Y values and the Y values predicted by the predictors.

The following table displays the predicted prestige scores based on our income and education predictors:

|00:
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A computer can calculate the multiple correlation between the observed and expected prestige scores to be 0.893.

2
If we square this value, we get: Ry o = 0.798. Interpret this value.
s N s AD

7. To compare our models, we can use the omnibus F-test (or an ANOVA summary table). Let's do both:

summary (fullmodel)
anova(fullmodel)
anova(reducedmodel, fullmodel)

(Rf2ull B ereduced ) / (kfull o kreduced ) M Sreg

kﬁzl _kreduced — — —
n—=kpy—1 2

(I_Rfull)/(n_kfull _1) MS,
Source SS df MS MSR (F)
Regression 195 55
(b1, b2 bo) k = .
Error - p < 0.0001
Total MSiotal R2=0.798



8. Here's some output from R. Verify our calculation and state any conclusions we can make.

> summary (fullmodel)

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -6.8477787 3.2189771 -2.127 0.0359 =*
income 0.0013612 0.0002242 6.071 2.36e-08 ***
education 4.1374444 0.3489120 11.858 < 2e-16 **x*

Residual standard error: 7.81 on 99 degrees of freedom
Multiple R-squared: 0.798, Adjusted R-squared: 0.7939
F-statistic: 195.6 on 2 and 99 DF, p-value: < 2.2e-16

> anova(fullmodel)
Analysis of Variance Table
Df Sum Sqg Mean Sq F value Pr(>F)
income 1 15279.3 15279.3 250.49 < 2.2e-16 ***
education 1 8577.3 8577.3 140.62 < 2.2e-16 ***
Residuals 99 6038.9 61.0

> anova(reducedmodel, fullmodel)
Model 1: prestige ~ 1
Model 2: prestige ~ income + education

Res.Df RSS Df Sum of Sg F Pr (>F)
1 101 29895.4
2 99 6038.9 2 23857 195.55 < 2.2e-16 *x*

> AIC(fullmodel, reducedmodel)
df AIC
fullmodel 4 713.7251
reducedmodel 2 872.8732

9. Let's add another predictor — %women — to our model. Does the combination of income, education, and % women
predict prestige better than a model with no predictors? To do this, we would compare:

Reduced: y=b, =Y =46.833

Full: y=b,+b,x, +b,x, +b;x,
Full: y=-6.794+0.001 3(income) +4.1866 (education) —0.0089(%women)
R’ =0.7982

Y, Xy X2, X3
Make sure you can interpret those coefficients and the squared multiple correlation. Interpret the following output:

fullmodel <- 1lm(prestige ~ income + education + percwomn, data=prestige)
summary (fullmodel)

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -6.7943342 3.2390886 -2.098 0.0385 *

income 0.0013136 0.0002778 4.729 7.58e-06 ***
education 4.1866373 0.3887013 10.771 < 2e-16 ***
percwomn -0.0089052 0.0304071 -0.293 0.7702

Residual standard error: 7.846 on 98 degrees of freedom
Multiple R-squared: 0.7982, Adjusted R-squared: 0.792
F-statistic: 129.2 on 3 and 98 DF, p-value: < 2.2e-16



10. Suppose we add another predictor (any predictor) to our model. What would happen to the value of R??

Because R? will increase monotonically when we add predictors (even if those predictors are virtually unrelated to

the dependent variable), we may want to use another statistic to evaluate the fit of our model.

We've already encountered Akaike's AIC: AIC =-2 ln(Lmodel)+ 2(# of coefficients in model + 1)

Remember, lower values of AIC indicate better fit. That means AIC penalizes models that have more parameters.

Here are the values of AIC for the 3 models we've fit thus far:

df AIC
fullermodel 5 715.6358 (predictors = income, education, $%women)
fullmodel 4 713.7251 (predictors = income, education)
reducedmodel 2 872.8732 (predictors = none)

Adjusted R-squared is an alternative to AIC that evaluates the fit of a model while penalizing models with more

parameters. As we add predictors, adjusted R-squared will increase only if the additional predictor improves the

prediction more than would be expected by chance:

n—1 k MS
Rl =1-(1-R)———=R-(1-R*) =1-—F
n—k-1 n—k-1 MS; .
. . 2 2 2 k 3
For our model with 3 predictors, Rlyy, ., = R =(1- R")———=0.7982 - (1-0.7982) ————=0.792
n—k-1 102-3-1
For all 3 of our models:
adjusted R-squared
fullermodel 0.792 (predictors = income, education, %women)
fullmodel 0.794 (predictors = income, education)
reducedmodel 0.000 (predictors = none)

From the AIC or adjusted R-squared values, which model might we want to choose?

What do these values indicate about the %women predictor?

11. Let's look one last time at our full model with 3 predictor variables:

Full: y=-6.794+0.0013(income )+ 4.1866(education)— 0.0089(%women)

Explain why we can’t simply compare the magnitude of the coefficients to determine which predictor is best?



12. If we want to compare coefficients in our model, we could calculate standardized beta coefficients.

One way to do this would be to convert all our predictors to z-scores before estimating the regression model.
We could also run the regression with our (untransformed) predictors and then convert the coefficients with:

B =b =
k k
Sy

As an example, suppose we want to convert the coefficient of education to a standardized beta coefficient:

S
B,=b, 2 = 41866 27254 _ 66396

s, 17.204

Converting all the coefficients yields the following. Interpret one of these coefficients.

coef(lm(scale(prestige) ~ scale(income) + scale(education) + scale(percwomn), data=prestige))

5 =0.32418(Zeome )+ 0.66396(Z,gucuion ) — 00164224 0men )

income education

Why is there no intercept?

Explain why we must still be cautious when comparing these beta coefficients.

13. Before we begin the model selection process, let's evaluate the conditions necessary for linear regression. We've
already discussed several of these conditions: validity, linearity, independent errors, equal variance of errors, and
normality of errors.

Based on the following model plots (from our full model with 3 predictors), evaluate the linearity, equal variances,
and normality assumptions.

Residuals vs Fitted Normal Q-Q

l 1 1 1 1 1

Residual

Standardized residuals

20 40 60 80 -2 -1 0 1 2
Fitted Value Theoretical Quantiles



14.

15.

Look at the parameters for our models with two and three predictors:

y=-6.848+0.0014(income ) + 4.1374 (education)
y=-6.794 + 0.0013(income) + 4.1866(educati0n) —-0.0089 (%women)

Notice that the coefficients remained fairly stable when we added a new predictor. That's a good sign we don't
have a multicollinearity problem.

Multicollinearity is when two or more predictors in our model are highly correlated (meaning that one can be
linearly predicted from the others). One effect of multicollinearity is that the coefficients change wildly when we

add or subtract predictors.

1

2
k

To detect multicollinearity, we can use the VIF (variance inflation factor): VIF, =

where le is the R-squared value obtained by regressing predictor k on the remaining predictors.

If you want to learn the details of VIF, I'd suggest: https://onlinecourses.science.psu.edu/stat501/node/347

For now, I'll just note the following rules of thumb:
o If the largest VIF is greater than 10 then there is cause for concern (Bowerman & O'Connell, 1990; Myers, 1990).
o If the average VIF is substantially greater than 1 then the regression may be biased

vif(fullmodel)

income education percwomn
2.282038 1.845165 1.526593

mean(vif (fullmodel))

[1] 1.500598

Evaluate the multicollinearity assumption based on these VIF calculations.

2
E e —e,_
To test the condition of independence-of-errors, we can use the Durbin-Watson statistic: D = ( M 1)

2
et

where e represents the residual (prediction error) for observation t.

The D statistic ranges from 0 to 4, with independent errors yielding a value near 2. Values of D larger or smaller
than 2 suggesting errors are not independent. R can calculate the D statistic and estimate its p-value:

durbinWatsonTest (fullmodel)

lag Autocorrelation D-W Statistic p-value
1 0.4032531 1.170379 0
Alternative hypothesis: rho != 0

From this, evaluate the assumption of independent errors.


https://onlinecourses.science.psu.edu/stat501/node/346
https://onlinecourses.science.psu.edu/stat501/node/347
http://www.pages.drexel.edu/~tpm23/STAT902/DWTest.pdf

Model Selection

16. So far, we've only compared the total contribution of 1, 2, and 3 predictors to reduced models with no predictors.
Suppose we're interested in finding a model that adequately predicts prestige using relatively few predictors.

Recall that we found income was a significant predictor of prestige. The R-squared value of Ri,l =0.5111 yielded
an omnibus F-statistic of 104.54.

We then found the combination of income and education — R\Z{,u =0.7980 and F = 195.55 — were better than a
reduced model with no predictors.

Our question is now: Did adding education as a predictor significantly improve our prediction?

Write out the full and reduced models we want to compare to answer this question:

Full model: Reduced model:

17. We can use our omnibus F-test or ANOVA summary table to compare these models. Verify these calculations.

Source SS df MS MSR (F)
income & education 23856.55 2 11928.3 195.55
income 15276.56 1 15276.6 104.54
education | income 8579.99 1 8580 140.7
Error 6038.876 99 61

Total 29895.426 101 MSiotal

anova(fullmodel)

Df Sum Sq Mean Sqg F value Pr(>F)
income 1 15279.3 15279.3 250.49 < 2.2e-16 ***
education 1 8577.3 8577.3 140.62 < 2.2e-16 **%*
Residuals 99 6038.9 61.0

Calculate the omnibus F-test to verify the value of F = 140.62.

. 2
Calculate and interpret: RPrestige, education | income



18. Let's continue this forward-selection process by adding another predictor to our model. Let's add %women.

Our question is: Does %women significantly improve our prediction over a model with income and education?
or: Should we add %women to predict prestige if we're already using income and education?

Write out the full and reduced models of interest.

Full model: Reduced model:

Using R, | calculated the following: R =0.511 R;,=0.798 R, =0.7982
R;,=0.723 R;,=0.559
R;,=0014 R:,=0.752

Use the omnibus F-test to answer our question:

anova(fullmodel)

Analysis of Variance Table
Df Sum Sq Mean Sq F value Pr(>F)

income 1 15279.3 15279.3 248.1727 <2e-16 ***
education 1 8577.3 8577.3 139.3167 <2e-16 ***
percwomn 1 5.3 5.3 0.0858 0.7702
Residuals 98 6033.6 61.6

Should we include %women as predictor of prestige? Explain.

19. Suppose we decided to use all 3 predictors. We could then construct confidence and prediction intervals for the
predicted prestige of a job with income = 5000, education = 10, and %women = 40:

predict(fullmodel, list(income=5000,education=10,percwomn=40), interval=“conf")
predict(fullmodel, list(income=5000,education=10,percwomn=40), interval=“pred")

Interpret:
Predicted prestige = 42.74

Confidence interval: (39.78, 45.70)

Prediction interval: (27.27,58.21)



20. The following figure and table attempt to visualize the contribution of two predictors on a dependent variable.

Effect SSgrec R? Values
A+ B+
X1 and Xz together SSyx, =A+B+C 3n:44444£4
’ A+B+C+D
X1
Y R A+B

X1 alone SSy, =A+B =
A+B+C+D
b’ S, =B+C R, - BrC

Xe slone T ATB+C+D

X2 Xl |X2 = “X4 unique” SS _ A+B+C B B_l_C A R2 _ A
win, =(A+ B+C)=(B+0) e

X, |X1 = “X1 unique” ) C
SS =(A+B+C)-(A+B)=C R =— -
v =(A+B+C)~(A+B) e

21. Let's turn to a simpler dataset to investigate interaction within the framework of regression.
The htwt dataset lists 4 measurements for 1000 subjects:

150 170 190 0 5 10 15

UOM DU 00 m_l

gender

y = weight = weight of each subject at age 16 (in kg)

1

x1 = height = height of each subject at age 16 (in cm)

x2 = male = (1 = male, 0 = female)
x3 = mal = malaise score for each subject at age 22

150 170 190

variable mean std. dev
weight 57.172 9.656277
height 166.163 8.025138
gender (50.9% female, 49.1% male)
mal 2.591 2.842851

0 5 10

10 14 18 40 60 80

Suppose we're interested in modeling an individual's weight as a function of their height. We could compute:
y=-46.764+0.62551(height) R*=2702 Rl,=2695 s, =8253  AIC=7063

We might then decide to see how well the combination of height and gender predict weight by comparing:

Full: §=b, +b,(height)+b, (female) get Full: $=-53788+0.67175(height)-1.3439(male)
Reduced: y=b, Reduced: y=57.17209

with R*=2736  R%,=2721 s, =8238  AIC =7060

Interpret that coefficient (-1.3439) for the male predictor variable.



22. Interpret the following output and plots:

Analysis of Variance Table

Response: weight
Df Sum Sq Mean Sq F value

height 1 25173 25172.9 370.9122 < 2e-16
gender 1 314 313.8 4.6231 0.03178
Residuals 997 67664 67.9

2
23. From the output displayed above, calculate: R

Pr(>F)

Residuals

JStandardized residuals|

weight, height, gender =
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24. Now let's go back to our question: Does height predict weight the same way for males and females?

When we construct a model such as
y=-53.788+0.67175 (height) -1 .3439(male)
we're indicating that weight differs by a constant
amount for males and females. No matter what
height we substitute into this model, males and
females with that same height will differ by 1.3439 kg
(see the parallel regression lines to the right)

If we want to model an interaction between height
and gender, we need to put that into our model. We
could do this in one of two ways:

a) Split our data into two sets (one dataset for males
and another for females). We could then run a
separate regression analysis for each dataset.

120
1

100
1

Height at Age 16 in Centimeters

b) Incorporate an interaction (product) term into our model and run a single regression analysis.

Let's try both options:

0 009
° °
0ga0°8 ? °
Dgﬁf;— —5
o o o
°
ogo%aco
88 %o
o °
°
o
170 180 190
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Option (a): Split our data into two sets (one for males and another for females); run separate regression for each.

males <- htwt %>%
filter(gender=="male")

females <- htwt %>%
filter(gender=="female")

male.model <- lm(weight ~ height, data=males)

coef (male.model)

female.model <- 1lm(weight ~ height, data=females)

coef (female.model)

The computer found the following parameter estimates: Males: y=—72.01376 +0.77066 ( height)

Females: y=-33.75055 +0.54792(height)

Explain how the effect of height on weight differs by gender.

Option (b): Incorporate an interaction (product) term into our model and run a single regression analysis.

We could add an interaction term into our model: 3 =b, +b, (height)+ b, (female)+b,, (height x female)

interaction.model <- 1lm(weight ~ height * gender, data=htwt)
int.model <- 1lm(weight ~ height + gender + height:gender, data=htwt)

and estimate these coefficients:

To interpret this interaction term (and its coefficient), we can do some manual arithmetic

For males: y=-33.75+0.5479(height)— 38.2632(male )+ 0.2227 (height x male)

$=-33.75+0.5479(height) — 38.2632(1)+0.2227 (height x 1)
y=-72.0132+0.7706(height)

For females: §=-33.75+0.5479(height)— 38.2632(male)+0.2227 (height x male)

y=
$=-33.75+0.5479(height)
) gender
110 ® female
100 » male
90 -
E 80 -|
£ 70
g
50 4
40 -
30

T
140 145 150 155 160 185 170 175 180 185 190

Height (cm)

~33.75+0.5479 (height) — 38.2632(0)+0.2227 (height x 0)

y=-33.75+0.5479 (height) — 38.2632(male)+0.2227 (height x male)

Notice the coefficients (from the model with the interaction term)
are the same as those from the two separate regression analyses.

We could test our interaction effect with the omnibus F-test:

Df Sum Sq Mean Sq F value

height 1

gender 1 314
height:gender 1 548
Residuals 996 67116

25173 25172

313
547
67

Pr(>F)

.9 373.5646 < 2.2e-16

.8
.8
.4

4.6562
8.1297

0.031181
0.004445
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Scenario:

e HS GPA = high school GPA
e Athlete = student athlete?
® Hours studying = hours studying per week

y X1
Student 1st sem. GPA HS GPA
1 2.87 2.82
2 3.16 3.49
255 1.69 3.26
Mean 2.65 3.275
Std. Dev 0.75 0.52
20 30 40

35

!

10 16 20

50

20

[ sauGpPA

X2 X3
HS %ile rank Athlete
43 no
76 no
70 yes
63.27 34.9%
24.48 athletes

|

oo 9] |
o

A\

Let's see how well we can predict the fall semester GPAs of St. Ambrose freshmen based on:

® HS %ile rank = high school percentile rank

® ACT score = ACT Composite score

¢ Gender = male or female

X4
ACT score
24
32
21
22.96
3.66

X5

Hours studying

1

|
u
|

athlete
-0 D o o o o
o b,
.% = 3
oF 0T od o 836k hoursSTUDY| 8
: ® L $02 i
@ P 9 hs gender E
1T 171 LI o a T 1 “ T I—II
0123 20 60 100 20 30 10 14 18

Data: http://www.bradthiessen.com/html|5/data/gpadata.csv
Note: | only kept records with no missing data. How could we handle missing data?

25.

30

20

1.0 16

X6
Gender
male
male
male
56.5%
female

In the previous example, we used a forward-selection process to evaluate different prediction models. This time,
let's try a backwards-selection process. Let's start with a full model containing all our predictors, including the
interaction terms. Then, we'll remove predictors from our model to see if the fit significantly worsens.

But first, let’s investigate the multicollinearity condition:

interact.model <- lm(sauGPA ~ hsGPA*athlete*ACTscore*hoursSTUDY*gender, data=gpa)

mean(vif (interact.model

[1] 46531.9

))

Based on the mean VIF of this model, we have a serious multicollinearity problem. That's to be expected, since we
expect these predictors to be correlated. For example, the correlation between HS GPA and HS Rank is r = 0.903.
We shouldn't include both those predictors in a model.

13


http://www.bradthiessen.com/html5/data/gpadata.csv

26. When | summarize that full model with all the interaction terms, here's the output from R:

Coefficients:

(Intercept) -2.858533
hsGPA 1.426448
athletenot athlete -3.421158
ACTscore 0.187316
hoursSTUDY -0.189176
gendermale -2.068469
hsGPA:athletenot athlete 0.782668
hsGPA:ACTscore -0.043748
athletenot athlete:ACTscore 0.114351
hsGPA:hoursSTUDY 0.059479
athletenot athlete:hoursSTUDY 0.322663
ACTscore:hoursSTUDY 0.004147
hsGPA:gendermale 0.371719
athletenot athlete:gendermale 12.750745
ACTscore:gendermale 0.057158
hoursSTUDY:gendermale 0.189588
hsGPA:athletenot athlete:ACTscore -0.024624
hsGPA:athletenot athlete:hoursSTUDY -0.098374
hsGPA:ACTscore:hoursSTUDY -0.001345
athletenot athlete:ACTscore:hoursSTUDY -0.007738
hsGPA:athletenot athlete:gendermale -3.125614
hsGPA:ACTscore:gendermale -0.010055
athletenot athlete:ACTscore:gendermale -0.633812
hsGPA:hoursSTUDY:gendermale -0.042746
athletenot athlete:hoursSTUDY:gendermale -0.507255
ACTscore:hoursSTUDY:gendermale -0.005725
hsGPA:athletenot athlete:ACTscore:hoursSTUDY 0.002488
hsGPA:athletenot athlete:ACTscore:gendermale 0.155965
hsGPA:athletenot athlete:hoursSTUDY:gendermale 0.112163
hsGPA:ACTscore:hoursSTUDY:gendermale 0.001181
athletenot athlete:ACTscore:hoursSTUDY:gendermale 0.028069

hsGPA:athletenot athlete:ACTscore:hoursSTUDY:gendermale -0.

Residual standard error: 0.5361 on 223 degrees of freedom
Multiple R-squared: 0.55, Adjusted R-squared: 0.4874
F-statistic: 8.791 on 31 and 223 DF, p-value: < 2.2e-16
AIC = 437.512

006461

8.896733
2.616383
10.001927
0.413151
0.984171
10.249080
2.923433
0.117887
0.467675
0.280278
1.043032
0.041278
3.018346
12.524280
0.479190
1.092736
0.132866
0.295006
0.011449
0.044410
3.679553
0.136975
0.584537
0.316015
1.302175
0.045755
0.012228
0.165924
0.372868
0.012903
0.055376
0.0154009

Forget about trying to interpret those coefficients. What does that F-statistic (F = 8.791) tell us?

What do the p-values for each parameter estimate tell us?

27. Let's try a second model that has all the predictors with no interaction terms.

no.interact <- lm(sauGPA ~ hsGPA + athlete + ACTscore + hoursSTUDY + gender, data=gpa)

Based on the following output, should we keep the interaction terms in our model?

Full model: Coefficient 95% Confidence interval
AIC = 402.7862 (intercept) -1.043, -0.054
R2 = 0.5184 hsGPA +0.525, +0.852
adj. RZ = 0.5088 Not athlete -0.178, +0.120
RMSE = 0.5248 ACTscore +0.020, +0.066
F = 53.612 hoursSTUDY +0.002, +0.017
p < 2.2e-16 Male -0.422, -0.128

321
545
342
453
192
202

Estimate Std. Error t value Pr(>|t|)
-0.
0.
-0.
0.
-0.
-0.
.268
.371
.245
.212
.309
.100
.123
.018
.119
.173
.185
.333
.117
.174
.849
.073
.084
.135
.390
.125
.203
.940
.301
.092
.507
.419

0.748
0.586
0.733
0.651
0.848
0.840
0.789
0.711
0.807
0.832
0.757
0.920
0.902
0.310
0.905
0.862
0.853
0.739
0.907
0.862
0.397
0.942
0.279
0.893
0.697
0.901
0.839
0.348
0.764
0.927
0.613
0.675
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28. We could use our omnibus F-test to compare the model with all predictors (and no interaction terms) to the model

29.

30.

with all the predictors and interaction terms.

anova(interact.model, no.interact)

Analysis of Variance Table

Model 1: sauGPA ~ hsGPA * athlete * ACTscore * hoursSTUDY * gender
Model 2: sauGPA ~ hsGPA + athlete + ACTscore + hoursSTUDY + gender

Res.Df RSS Df Sum of Sq F Pr(>F)
1 223 64.091
2 249 68.583 -26 -4.492 0.6011 0.9384

Based on that, what conclusion do you make regarding the interaction terms?

If you look at the output pasted in question #27, you'd notice the athlete variable doesn’t seem to help our

prediction. Let's eliminate it and run the omnibus F-test:

No athlete model: Coefficient 95% Confidence interval

R2 = 0.5181 (intercept) -1.052, -0.080
adj. RZ = 0.5104 hsGPA +0.526, +0.852
RMSE = 0.5239 ACTscore +0.020, +0.065
F =67.21 hoursSTUDY +0.002, +0.017
p < 2.2e-16 Male -0.399, -0.129

AIC = 400.94

Analysis of Variance Table

Model 1: sauGPA ~ hsGPA + ACTscore + hoursSTUDY + gender

Model 2: sauGPA ~ hsGPA + athlete + ACTscore + hoursSTUDY + gender
Res.Df RSS Df Sum of Sq F Pr(>F)

1 250 68.624

2 249 68.583 1 0.041239 0.1497 0.6991

Based on that, what conclusion do you make regarding the athlete predictor?

We could continue this backwards-selection process by eliminating the hours studying variable:
No hours model: Coefficient 95% Confidence interval

R2 = 0.5072 (intercept) -1.128, -0.156

adj. R2 = 0.5014 hsGPA +0.541, +0.869

RMSE = 0.5288 ACTscore +0.026, +0.070

F = 86.13 Male -0.411, -0.139

p < 2.2e-16
AIC = 404.64

Model 1: sauGPA ~ hsGPA + ACTscore + gender
Model 2: sauGPA ~ hsGPA + ACTscore + hoursSTUDY + gender

Res.Df RSS Df Sum of Sqg F Pr(>F)
1 251 70.175
2 250 68.624 1 1.5516 5.6525 0.01818 =*

Based on the F-statistic, its p-value, or AIC, what conclusion do you make regarding the hours studying predictor?

15



31. Adding or removing a single predictor at a time can be tedious. We can automate this process to fit every
combination of our predictors using best subsets regression.

With 5 predictors to choose from, we could fit: ® 1 model with no predictor
* 5 models each having a single predictor
® 10 models each having 2 predictors
* 10 models each having 3 predictors
* 5 models each having 4 predictors
* 1 model with all 5 predictors

That gives us a total of 27 =27 = 32 possible regression models to compare. You can see how this method
becomes computationally complex when we have a larger number of predictors.

Best subsets regression fits all these models and then compares them using a criterion (such as R-squared or AIC).
We'll use the leaps package in R to use best subsets regression:

library(leaps)
leaps<-regsubsets(sauGPA ~ hsGPA + athlete + ACTscore + hoursSTUDY + gender, data=gpa, nbest=10, nvmax=32)
summary (leaps)

plot(leaps,scale="r2")

library(car)
#subsets (leaps, statistic="adjr2")

Selection Algorithm: exhaustive

hsGPA athlete ACTscore hoursSTUDY gendermale 8
1 (1) "= " " e "
1 (2y) "*" " B v "o
1 (3) " "o "o " "o .
1 (4 " " "o v R :
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2 (3 ) " " " R "o .
2 (4 ) " et "o "o "o :
2 (5) " " R e R g .
2 (6 ) " " "o e B " g
2 (7)) " " " " v " .
2 (8) " " " " Mk R .
2 (9) "o " " " I
2 (10 ) " " R " v M .
3 (1) S "o S "o S :
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32. Suppose we ultimately decide to make predictions with the model that includes HSGPA, ACT scores, and gender:
y=-0.6416+0.7051 (hSGPA) + 0.0480(ACTscore) - O.2753(male)

The R-squared and AIC values tell us how well this model fits the data we used to estimate the coefficients, but how
accurate would this model be for new data?

The data we used were from first-year students in 2013. Suppose | gathered high school GPAs, ACT scores, and
gender for this year's first-year students. | could then predict the Fall GPAs of these students using our model.

On the 2013 data, our model had an R-squared value of 0.5072. If we fit our model to this year’s data, would you
expect the R-squared value to be greater than, less than, or equal to 0.5072? Explain.

33. Using the following visualization as a guide, explain the bias-variance trade-off:

Bias-Variance Tradeoff

High Bias - Low Variance Low Bias - High Variance

“overfitting” - modeling the
random component
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34. Because our models will have the tendency to overfit our sample data (and not generalize to other datasets), we
might want to split our data before fitting our models.

One way to do this is to split our data into training and testing subsets. The training dataset would be a random
sample of most of the observations in our data. We'd use this train (fit) our models and select the best model. We
could then test our model on the testing data. Since the testing data is “new” to our model, it would give us a
sense of how well our model generalizes beyond our sample data.

If splitting our data once is a good idea, why don't we split our data multiple times? Rather than taking multiple
random samples (which could use the same observation multiple times), we could use k-fold cross validation. To
use this method, we would:

¢ Randomly divide the data into k pieces (let's say k = 10)

¢ Use k-1 of those pieces (90% of the data; called the training set) to estimate the model coefficients

¢ Compute prediction error on the remaining piece (10% of the data; called the test set)

* Do this for each piece (10% of the data)

¢ Average the k (10) prediction error estimates. This gives us the predictive accuracy of the model.

® Repeat this process for other competing models. Whichever gives the smallest mean error is the “best”
e Estimate coefficients for that “best” model using all of the data

. Let’s see this process work on the small dataset pictured to the left.
We randomly split the data into 3 pieces (red, blue, and green dots)

. . Below (left): Model fit to the green and blue dots; error measured with red dots
. Below (middle): Model fit to red and blue dots; error measured with green dots

Below (right): Model fit to red and green dots; error measured with blue dots

. . We then take the average of those mean square errors.
We'd repeat this process with different models (other predictor variables) and
choose the model that produces the smallest average mean square error.

]

library(DAAG)

cross.validated.model <- lm(sauGPA ~ hsGPA + athlete + ACTscore + hoursSTUDY + gender, data=gpa)
CVlm(gpa, cross.validated.model, m=10)

Average cross-validated mean square error: Model
0.281 GPA = f(hsGPA + athlete + ACTscore + hoursSTUDY + gender)
0.280 GPA = f(hsGPA + + ACTscore + hoursSTUDY + gender)
0.283 GPA = f(hsGPA + + ACTscore + + gender)
0.297 GPA = f(hsGPA + + ACTscore )
0.311 GPA = f(hsGPA + )
0.337 GPA = f(full model including all possible interaction terms)

From this process (and the 6 models displayed above), what model would we choose as "best”"?

18


http://www.autonlab.org/tutorials/overfit10.pdf

35. With forward-selection, backwards-selection, best-subsets regression, and cross-validation, our model selection is
a discrete process: each predictor is either in or out of the model. These discrete processes can have high
variance. A different set of data could lead to a completely different model with completely different predictors.

Ridge regression (Tikhonov regularization) is a method that allows each predictor to be partly included in models.

Recall our least squares criterion. We estimate parameters in a regression model to minimize:

N P 2
S = Y|y =by = Dbyx;
i=1 j=l

Ridge regression is similar, except coefficients are estimated to minimize:

2

N P P P

E y,=b, - Ebjxij + )LE[)]? =SS, +/12bf where A is a tuning parameter.
j=1 Jj=l

i=1 j=1

As you can see, the criterion for ridge regression contains two components. As with ordinary least squares
regression, ridge regression seeks coefficients that fit the data well (by minimizing the first component: SSE)

The second term, called a shrinking penalty, is smaller when the coefficient estimates are close to zero, so it has the

effect of shrinking the coefficient estimates towards zero.

The tuning parameter A controls the relative impact of these two components on the coefficient estimates. When
A=0, the penalty term has no effect and ridge regression will yield the least squares estimates. When A is very
large, the coefficient estimates will approach zero. Choosing an appropriate value for A is very important (and,
unfortunately, won't be covered in this course).

While we want to shrink the coefficient estimates, we're typically not interested in shrinking the intercept (which is
simply the mean value of our dependent variable when all predictor variables equal zero). For this reason, we
typically center our data before performing ridge regression by taking each predictor and subtracting its mean.

Let's fit all our predictors, including both HSGPA and HSrank, on a data.frame that has been centered:

gpa.centered <- gpa

gpa.centered$athlete <- as.numeric(gpa.centered$athlete)

gpa.centered$gender <- as.numeric(gpa.centered$gender)-1

gpa.centered <- data.frame(scale(gpa.centered, center = TRUE, scale = FALSE))

coef (1lm(sauGPA ~ hsGPA + hsRANK + athlete + ACTscore + hoursSTUDY + gender, data=gpa.centered))

library(MASS)
ridge <- Im.ridge(sauGPA ~ hsGPA + hsRANK + athlete + ACTscore + hoursSTUDY + gender, data=gpa.centered,
lambda = seq(0, 50, .1))

select(lm.ridge(sauGPA ~ hsGPA + hsRANK + athlete + ACTscore + hoursSTUDY + gender,
data=gpa.centered, lambda = seq(0, 50, .01)))

Ilm.ridge(sauGPA ~ hsGPA + hsRANK + athlete + ACTscore + hoursSTUDY + gender, data=gpa.centered,
lambda = 6.43)

library(genridge)
traceplot (ridge)
abline(v=6.43, lty=1, 1lw=3)

The output is displayed on the next page.
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Below, I've pasted output using ridge regression. | used a model that included both HS GPA and HS Rank to
introduce collinearity. Notice the smaller magnitude of the coefficients under the ridge regression method.
Lambda was selected to be 6.43 to estimate the coefficients

Linear Ridge

Regression Regression

Predictor Coefficient Coefficient
hsGPA +0.7510 +0.6622
hsRANK -0.0016 +0.0002
not athlete -0.0316 -0.0243
ACTscore +0.0436 +0.0432
hoursSTUDY +0.0093 +0.0093
male -0.2810 -0.2702

The plot shows the shrinkage of the coefficients as we increased lambda. Note that we wouldn’t want to use the
ridge regression coefficients (because they have bias). We use ridge regression to determine if our coefficient
estimates are stable as we increase bias. If the estimates remain stable (like most in the plot displayed above),
we have evidence that multicollinearity is not a problem.
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36. Unlike the discrete processes (e.g., forward-selection, best subsets) ridge regression does not allow us to remove
any predictors from a model. The penalty will shrink all coefficient estimates towards zero, but it won't set them
equal to zero (which would mean we could remove them from the model).

The lasso (least absolute shrinkage and selection operator) not only shrinks estimates towards zero; it actually
forces some coefficient estimates to be zero when A is large.

2
N 4 P D

The lasso coefficients minimize the following criterion: 2 v, —b, - Ebszji +/12‘bj‘ =SS +)Lz‘bj|
Jj=1 Jj=l Jj=1

i=1

Notice this is extremely similar to the ridge regression criterion, except penalty term uses absolute values of
coefficients (rather than squared values).
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Other investigations of our GPA dataset

37. Let's quickly investigate some other questions we can address with our data. Determine what models we could fit

to address each question. Then, we can use our data in-class to attempt to answer each question.

a) How well do ACT scores predict first-semester GPAs at St. Ambrose?

Full model: Reduced model:

How could we attempt to answer the question?

b) Do ACT add to our prediction of SAU GPAs beyond what high school GPAs predict?

Full model: Reduced model:

How could we attempt to answer the question?

c) Do the self-reported hours studying per week predict SAU GPAs beyond ACT and high school GPA?

Full model: Reduced model:

How could we attempt to answer the question?
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38. The final question is: Do student athletes have higher or lower SAU GPAs?

To address this question, we could conduct a t-test (or randomization-based test of the two groups):

Two Sample t-test
data: sauGPA by athlete

sample estimates: athlete mean = 2.501573 not athlete mean = 2.729

alternative hypothesis: true difference in means is not equal to 0
t = -2.3323, df = 253, p-value = 0.02047

95 percent confidence interval: -0.41952830 -0.03539793

From this, what would we conclude?

39. We could also address this question by comparing: Full: 5;: b, +b, (athlete)
Reduced: y=b,
(0.02105—0)/(1—0)

F= =544 (p=0.02047)
How does this compare to the t-test? (1- 0.02105) /(255-1-1)

40. As we'll soon see, the t-test (and ANOVA) are simply special cases of linear regression. Regression allows us,
though, to develop and test more complex models. For example, we have already concluded that athletes have
lower GPAs than non-athletes. Would this difference hold if we controlled for ACT scores? In other words, if we
have two students with the same ACT score, does being an athlete have an association with a lower GPA. To test
this, we could compare:

Full: $=b,+b,(ACTscore)+ b, (athlete)
Reduced: y=b,+b,(ACTscore)

= (02955-02875)/2=1) ) oo (1 _.00212)
(1-0.2955)/(255-2~1)

What conclusions can we make? Do athletes have lower first-semester GPAs?



