Math Placement Data Analysis

N = 477 students 43% = Male 57% = Female	Missing Data: ACT MATH 18 missing cases (3.8%) ACT COMP 18 missing cases (3.8%) Of the 18 missing cases, 11 were male students
	One student had a MATH ACT score of 1 and an ACT COMPOSITE of 17. An estimated MATH ACT of 17 was substituted for this student. Regression: MATH ACT = 0.54 + 0.94(COMPOSITE) = 0.54+0.94(17) = 16.52 All other ACT scores looked valid.

ACT MATH							
Minimum = 1 Maximum = 3 Mean = 21.00 StDev = 4.15	3 34 5						
Percentile	<u>Score</u>						
5	16						
10	16						
25	17						
50	20						
75	24						
90	27						
95	28						
Male Average	e = 21.23						
Female Avera	age = 20.93						
(No significa	nt difference in						
means or	variances.)						

ACT Cor	ACT Composite							
Minimum = 13 Maximum = 32 Mean = 21.77 StDev = 3.54	2							
Percentile	<u>Score</u>							
5	17							
10	18							
25	19							
50	21							
75	24							
90	27							
95	29							
Male Average Female Averag	= 21.70 ge = 21.85							
(No significant means or v	t difference in variances.)							

Placement: Course Number Percentage **MATH 090** 14 2.9% **MATH 095** 99 20.8% MTI 195 41.1% Completed 167 35.2% Missing 2 0.4%

Placement by Gender: (No statistical difference between male and female placement)

	Ma	ale	Fen	<u>nale</u>
<u>Course</u>	Number	Percentage	<u>Number</u>	Percentage
MATH 090	8	3.9%	6	2.2%
MATH 095	45	22.2%	54	19.9%
MTI	75	36.9%	120	44.1%
Completed	75	36.9%	92	33.8%

Courses Taken:

	OVER	RALL			
<u>Course</u>	<u>Number</u>	Percentage	<u>Course</u>	<u>Female</u>	Male
MATH 090	7	1.5%	MATH 090	2 (1%)	5 (3%)
MATH 095	53	11.1%	MATH 095	31 (11%)	22 (11%)
MATH 131	4	0.8%	MATH 131	4 (2%)	0 (0%)
MATH 151	67	14.0%	MATH 151	44 (16%)	23 (11%)
MATH 152	13	2.7%	MATH 152	10 (4%)	3 (2%)
MATH 171	7	1.5%	MATH 171	2 (1%)	5 (3%)
MATH 191	11	2.3%	MATH 191	6 (2%)	5 (3%)
None/Unknown	315	66.0%	None/Unknown	174 (64%)	141 (69%)

High Schools with 2 or more students:

School	Students	School	Students	School	Students
Assumptn	24	Lincnway	4	LinnMar	2
West	18	Clinton	4	Washingt	2
Dowling	18	StRita	4	RockRdge	2
Wahlert	16	McAuley	4	Canton	2
North	13	Baringtn	4	Stark	2
Marist	11	JBConant	4	JFK	2
Central	9	Wilton	4	Richwood	2
StFrancs	9	Lyons	4	Ohio	2
Alleman	9	Dunlap	3	Marion	2
Bettndrf	8	OakPark	3	Ottumwa	2
Moline	7	Hinsdale	3	Praire	2
PeoriaND	7	Columbus	3	Freeport	2
PV	7	Mundelen	3	Ashton	2
NScott	7	Muscatin	3	Camanche	2
NotreDam	6	Sherrard	3	Fulton	2
Mrquette	6	Minooka	3	Indianol	2
Aquinas	5	Westmer	3	Marmion	2
Dixon	5	CenCIntn	3	Galva	2
Beckman	5	RolMeado	3	StBede	2
Rosary	5	WBurlngt	3	Feldcrst	2
Newman	5	WDelawar	3	FtMadsn	2
Hmpstead	5	ArchOhara	2	Napervil	2
Wheaton	5	CaryGrv	2	CrlSndbrg	2
Provdnce	5	York	2	Annawan	2
Aurora	5	ValleyH	2	Total	347 (73%)

High Schools sorted by ACT scores and GPAs: (only high schools with 5+ students)

School	ACT MATH	Students		School	HS GPA	Students
Moline	25.0	7		Moline	3.56	7
Hmpstead	23.0	5	/	Aquinas	3.47	5
NotreDam	22.7	6] /	West	3.47	18
Marist	22.2	11	l //	Bettndrf	3.45	8
Dowling	22.0	18		Wahlert	3.37	16
Rosary	22.0	5		Hmpstead	3.33	5
Wheaton	21.6	5		Central	3.25	9
Newman	21.4	5		Beckman	3.25	5
West	21.4	18		NotreDam	3.23	6
Mrquette	21.3	6		Aurora	3.22	5
PeoriaND	21.0	7		Mrquette	3.20	6
Bettndrf	20.9	8	K XK /	Newman	3.16	5
PV	20.7	7		Provdnce	3.13	5
Central	20.0	9		North	3.13	13
Aurora	19.6	5		Assumptn	3.07	24
Dixon	19.4	5		Alleman	3.04	9
North	19.3	13	////\/\XX\	Wheaton	2.93	5
Wahlert	19.3	16	/// X //\ \`	Rosary	2.91	5
StFrancs	19.1	9	// / 🖌 🛝	Dowling	2.91	18
Aquinas	19.0	5		PV	2.88	7
Beckman	19.0	5	$\langle / / \rangle$	Marist	2.87	11
NScott	19.0	7		Dixon	2.85	5
Provdnce	19.0	5	$\langle // \rangle$	StFrancs	2.78	9
Alleman	18.9	9	//	NScott	2.68	7
Assumptn	18.9	24	Y \	PeoriaND	2.66	7

The lines show the change in rank between a high school's average ACT Math score and average GPA.

For all students, the correlation between rank in HS GPA rank and ACT Composite is 0.48. For the schools listed above, the correlation between rank in HS GPA rank and ACT Composite = 0.10

Placement by High School:

	Placement						
School	090	095	MTI	Complete	Total		
Alleman		3	6		9		
Aquinas		1	3	1	5		
Assumptn	2	5	12	5	24		
Aurora	1		3	1	5		
Beckman		3	1	1	5		
Bettndrf		1	4	3	8		
Central	1	2	3	3	9		
Dixon		1	3	1	5		
Dowling		4	9	5	18		
Hmpstead		1	1	3	5		
Marist		1	6	4	11		
Moline			1	6	7		
Mrquette	1	1	1	3	6		
NScott	1	4	1	1	7		
Newman		2	1	2	5		
North		5	5	3	13		
NotreDam		1	3	1	5		
PV		1	5	1	7		
PeoriaND		2	3	2	7		
Provdnce	1	3		1	5		
Rosary		1	1	3	5		
StFrancs		3	5	1	9		
Wahlert	2	3	7	4	16		
West	1	4	6	7	18		
Wheaton		1	1	3	5		
Other	4	46	104	102	256		
TOTAL	14	99	195	167	475		

Courses Taken by High School:

Course Taken								
School	090	095	131	151	152	171	191	None
Alleman		2		1				6
Aquinas				1			2	2
Assumptn	1	2		5	1			15
Aurora				1				4
Beckman		1						4
Bettndrf				2	1			5
Central	1	1		1				6
Dixon		1		1				3
Dowling		2		3		1		12
Hmpstead				1		1		3
Marist		1		2				8
Moline			1					6
Mrquette	1			1	1			3
NScott		4						3
Newman		2						3
North		1						12
NotreDam				1				4
PV				2				5
PeoriaND		1		1				5
Provdnce	1	2			1			1
Rosary		1		1				3
StFrancs		2		2				5
Wahlert		3		3	1			9
West	1	3		2	1	1	1	9
Wheaton					2			3
Other	2	24	3	36	5	4	7	176
TOTAL	7	53	4	67	13	7	11	315

School	А	В	С	D	F	D/F
Alleman		1	1	1		33%
Aquinas	2		1			
Assumptn	3	3	1	2		22%
Aurora		1				
Beckman					1	100%
Bettndrf	1	2				
Central			2		1	33%
Dixon		2				
Dowling	1	2	2		1	17%
Hmpstead	1	1				
Marist		2	1			
Moline	1					
Mrquette		2		1		33%
NScott		1	2		1	25%
Newman			2			
North					1	100%
NotreDam	1	1				
PV	1	1				
PeoriaND		1	1			
Provdnce	1	3				
Rosary	2					
StFrancs		3		1		25%
Wahlert	1	3	2	1		14%
West	3		2	1	3	44%
Wheaton	1	1				
Other	22	28	21	4	6	12%
TOTAL	25%	36%	23%	7%	7%	15%

Ability Level of Placed Students:

Placement	ACT MATH				HS GPA	
	Low	Mean	High	Low	Mean	High
MATH 090	13	15.2	17	1.80	2.81	3.82
MATH 095	13	17.1	22	1.79	2.77	3.92
MTI	15	19.5	26	2.00	3.03	4.00
Completed	19	25.5	34	2.25	3.51	4.00
Total	13	21.0	34	1.79	3.14	4.00

It looks as though ACT MATH is what separated students into placement groups, but it wasn't consistent.

Students with ACT scores below 15 were placed into either MATH 090 or 095.

At least one student with an ACT MATH score of 22 was placed into MATH 095, while students with ACT MATH scores of 15 were allowed to take other courses. This was probably due to high school course work and grades from the student transcripts.

A multivariate analysis of variance finds that the placement groups <u>do</u> differ in their ACT/GPAs.

A univariate ANOVA on this data finds the ACT MATH scores are significantly different for all placement groups (they <u>do</u> differ in math ability). The groups differ in GPAs as well, although the GPAs of MATH 090, MATH 095, and MTI are not statistically different. It appears as though HS GPA is not a potent predictor of placement.

	Course Taken								
Placement	090	095	131	151	152	171	191	None	
MATH 090	7							7	
MATH 095		53	1	2		1		42	
МТІ			3	55	2	1	3	131	
MTX				10	11	5	7	134	

No students placed in MATH 090 enrolled in a higher-level course.

4 students placed in MATH 095 enrolled in higher-level courses:

Marcie Wulff (ACT = 17; GPA = 3.28) earned a B in MATH 131 Darcie Debiase (ACT = 19; GPA = 2.30) earned a C in MATH 151 Megan Sones (ACT = 17; GPA = 3.45) earned a D in MATH 151. Casey Breitbach (ACT = 19; GPA = 3.43) earned an A in MATH 171.

How were students placed?

Placement decisions were made by examining student ACT MATH scores, HS GPAs, and grades received in the high school math courses. In this analysis, the high school course grades were not used.

If students were adequately placed into math courses using the current method, then the following rule can be used to place students (with about 80% accuracy):

(Placement) = (-10.798) + (0.416 * ACT) + (0.647 * GPA)

If (Placement) < -2.6, then the student should be placed in MATH 090 If { -2.5 < (Placement) < -1.9 }, then the student should be placed in MATH 090 If { -1.9 < (Placement) < -0.5 }, then the student should be placed in MATH 090 If (Placement) > -0.5, then the student should be placed in MATH 090

Course Grades

Grades were recorded for 162 students. 85% of students successfully passed their SAU math course; 15% of students were unsuccessful (and, perhaps, inappropriately placed). Some of the students earning A's may also have been inappropriately placed, but we will ignore these students for now.

	А	B+	В	C+	С	D	F	Total
M090		1	2		2	1	1	7
M095	6	1	12	1	16	7	10	53
M131	1	1	2					4
M151	15	9	21	2	14	3	3	67
M152	7		6					13
M171	5		2					7
M191	7		1		3			11
Total	41	12	46	3	35	11	14	162
	25%	36%		23%		15%		

Since only 4 students chose to place themselves in higher courses, the above table also demonstrates the success rate of the current placement methods.

Multinomial Logistic Regression (Effect of ACT and GPA on our placement decisions): Multinomial logistic regression Number of obs = 449 145.79 Wald chi2(6) = 145.79 Prob > chi2 = 0.0000 Prob > chi2 = Log pseudolikelihood = -234.50675Pseudo R2 0.5492 _____ Robust placemnt Coef. Std. Err. z P>|z| [95% Conf. Interval] 0 actmath-1.653118.3022048-5.470.000-2.245429-1.060808hsgpa-.4365549.7869236-0.550.579-1.9788971.105787_cons26.559935.0701895.240.00016.6225436.49732 _____+ 1 actmath-.6841248.0949373-7.210.000-.8701986-.4980511hsgpa-1.232749.3417917-3.610.000-1.902649-.5628501_cons15.340782.1845517.020.00011.0591419.62242 _____+ 3 actmath | 1.128323 .1528112 7.38 0.000 .8288186 1.427828 hsgpa | 1.570369 .4561456 3.44 0.001 .6763401 2.464398 _cons | -30.38062 3.47585 -8.74 0.000 -37.19316 -23.56808 -----------

(placemnt==2 is the base outcome)

The above output displays the change in log-odds of being placed in (GROUP A) vs. (MATH 095) for every unit change in ACT MATH and/or HS GPA. This could be used to create a placement decision rule, but it also shows that ACT MATH scores had more impact on placement than HS GPA.

For each point decrease in ACT MATH scores, the log-odds of being placed below MATH 095 increases by –0.68.

LOGISTIC REGRESSION ANALYSES Success = f(HSGPA, ACTMATH) for each course

MTX: All students placed above MATH 151 successfully completed their courses.

MTI: Students who were allowed to take any course above MATH 095

Logistic regression				er of obs	=	= 54	
			Wald	chi2(2)	=	11.66	
			Prob	> chi2	=	0.0029	
Log pseudolikelihood = -11.156254					=	0.2176	
	Robust						
Coef.	Std. Err.	Z	P> z	[95%	Conf.	Interval]	
2.622127	1.713971	1.53	0.126	 7371	953	5.981449	
3932889	.2805641	-1.40	0.161	9431	845	.1566068	
2.984838	9.490967	0.31	0.753	-15.61	711	21.58679	
	Robust						
Odds Ratio	Std. Err.	Z	P> z	[95%	Conf.	Interval]	
13.76497	23.59276	1.53	0.126	.478	454	396.0136	
.6748338	.1893342	-1.40	0.161	.3893	859	1.169536	
	<pre>ession elihood = -11 Coef. 2.6221273932889 2.984838 Odds Ratio 13.76497 .6748338</pre>	Pession Pelihood = -11.156254 Robust Coef. Std. Err. 2.622127 1.713971 3932889 .2805641 2.984838 9.490967 Robust Odds Ratio Std. Err. 13.76497 23.59276 .6748338 .1893342	ession elihood = -11.156254 Robust Coef. Std. Err. 2.622127 1.713971 1.53 3932889 .2805641 -1.40 2.984838 9.490967 0.31 Robust Odds Ratio Std. Err. z 13.76497 23.59276 1.53 .6748338 .1893342 -1.40	PessionNumber Wald ProbProbNumber Wald ProbProbPseudRobust Coef.Std. Err.2.6221271.7139711.530.1263932889.2805641-1.400.1612.9848389.4909670.310.753Robust Odds RatioOdds RatioStd. Err.z $P > z $ 13.7649723.592761.530.126.6748338.1893342-1.400.161	PessionNumber of obs Wald chi2(2) Prob > chi2Plihood = -11.156254Pseudo R2Robust Coef. Std. Err. z 2.6221271.7139711.530.1267371 39328892.9848389.4909670.310.753-15.61Robust 0dds RatioStd. Err. z P> $ z $ [95%13.7649723.592761.530.126.478.6748338.1893342	PessionNumber of obs Wald chi2(2) Prob > chi2 Prob > chi	

MTE: Students placed into MATH 095

Logistic regression				Numbe	r of obs	s =	47
				Wald	chi2(2)	=	2.25
				Prob 3	> chi2	=	0.3241
Log pseudolike	Pseud	o R2	=	0.0561			
		Robust					
success	Coef.	Std. Err.	Z	P> z	[95%	Conf.	Interval]
hsqpa	1.027494	.8135075	1.26	0.207	5669	9512	2.62194
actmath	2281188	.2187916	-1.04	0.297	6569	9424	.2007048
_cons	1.795542	4.100812	0.44	0.661	-6.241	L901	9.832985
	 	Robust					
success	Odds Ratio	Std. Err.	Z	P> z	[95%	Conf.	Interval]
hsqpa	2.794056	2.272985	1.26	0.207	.5672	2523	13.76239
actmath	.7960297	.1741646	-1.04	0.297	.5184	1341	1.222264

MTR: Students placed into MATH 090

Having a HS GPA at 2.7 or above guaranteed success in this course.

We could use a cluster analysis to find 4 groups of students We could use a discriminant analysis function to classify students (and allow them to test) We could use a logistic regression analysis and calculate probabilities of success