
b) Detection 
 

Statistical methods to detect cheating do not, in fact, detect cheating.  These methods, first developed in the 1920s to detect 
student cheating on multiple-choice tests, measure the likelihood of observing score gains, erasures, or answer patterns from 
student answer sheets.  While the methods can identify unlikely large score gains, an improbably number of erasures, or 
unusual patterns of answers to items, they cannot determine if these events were due to cheating or simply due to chance.  
Furthermore, the methods cannot identify all forms of cheating.  They can only attempt to detect cheating due to educators 
giving answers to students or changing student answer sheets. 

 
While most statistical detection methods were developed to detect student cheating, they can also be used to identify possible 
educator cheating.  After all, if multiple students within a class or school are flagged as having unusual patterns of answers or 
erasures, the educator in charge of that class or school may have cheated.   

 
 
Early Developments 

Saupe (1960) summarizes the development of statistical detection methods to detect students who copy answers from other 
students.  Bird (1927, 1929) developed three empirical approaches to detect possible copying in which the number of 
matching incorrect answers between two student tests is compared to the distribution of identical incorrect answers observed 
from a large random sample of answer sheet pairs (Saupe, 1960, p. 476).  Because the number of incorrect answers depends 
upon the ability level of the student, the empirical distribution was based on random samples of test pairs from students with 
similar total scores to the suspected cheater.  If the tests from the suspected cheater and the source student (from whom the 
cheater allegedly copied) were found to have an unusually large number of identical incorrect responses in comparison to this 
empirical distribution, then the suspected cheating could be verified. 
 
In an application of his method, Bird describes a test administration in which the test proctor observed suspicious behaviors 
from four examinees.  Bird calculated an average of 4.0 identical incorrect answers from a random sample of pairs of tests 
from examinees not suspected of cheating.  The suspected cheaters had 17, 25, 28, and 31 identical incorrect answers on the 
149-item test.  As validation of his method, Bird reports that three of the suspected cheaters “confessed guilt when confronted 
with the evidence” (Bird, 1927, p.261). 

 
 
From Empirical to Chance Models 

Rather than taking the time to develop the empirical distribution, Dickenson (1945) developed a method to determine the 
likelihood of identical answers occurring by chance.  This method simply compares the actual number of identical incorrect 
answers on a pair of answer sheets to the expected number based on the number of possible responses to each item.  Under 
this method, it is assumed that each incorrect item response is equally likely to be chosen by students.  If k is the number of 
possible responses to each item, then (k-1)/k2 is the expected proportion of incorrect answers on one test that are identical to 
another test.  Dickenson suggested that if the observed proportion of identical incorrect answers is more than twice the 
expected proportion, then copying is implied (Saupe, 1960, p. 476).   
 
Anikeeff developed another chance model using the binomial distribution to determine the likelihood of observing a specific 
number of identical incorrect answers between two tests.  The number of observed identical incorrect answers between a pair 
of tests is compared to a binomial distribution with a mean of N, and a standard deviation of Np(1! p) , where N is the 
number of wrong responses by the suspected cheater and p is the reciprocal of the number of possible responses to each item 
(Saupe, 1960, p. 476).  A low likelihood of observing that number of matching incorrect answers may indicate copying. 
 
In an application of his method, Anikeef concludes that his method is not effective at detecting copying.  He concluded that 
his method would be useful in situations in which an examinee copies more than 16% of the answers from another examinee 
(Anikeeff, 1954). 

 
Bellezza and Bellezza (1989) developed a method similar to Anikeef’s method called Error Similarity Analysis (ESA).  This 
method, used by the Scrutiny! software package (Advanced Psychometrics, 1993), calculates the total number of times all 
pairs of examinees chose identical incorrect answers for each item.  The probability of observing a given number of identical 
incorrect answers is estimated by the binomial distribution: 
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where c  is the number of common items answered incorrectly by a pair of examinees, w  is the number of items for which 
the pair of examinees had identical incorrect responses, and P is the estimated probability of two examinees selecting an 
identical incorrect answer.  Using this equation, or a method based on a standard normal approximation, Bellezza and 



Bellezza were able to determine the likelihood of observing a specific number of identical incorrect answers between two 
examinees. 
 
Holland (1996) describes another popular method to detect possible cheaters called the K-Index.  This index, used by the 
Educational Testing Service (ETS), may be the most popular method currently used (Cizek, 1999, p. 141).  Although limited 
information about this index exists, Holland describes it as a method used to “assess the degree of unusual agreement 
between the incorrect multiple-choice answers of two examinees” based on an estimate of the probability two examinees 
would agree on a response by chance (Holland, 1996, p. 5).  The index uses the binomial distribution to model this 
probability.  Sotaridona (2001) developed two indices, S1 and S2, similar to the K-Index except using the poisson distribution 
to model the probability of observing a specific number of identical examinee responses. 

 
 
 
Incorporating More Information 

Acknowledging the limitation in methods that only analyze matching incorrect answers, Saupe (1960) developed his method 
to detect copying on multiple-choice tests.  In this method, the total number of items on the test, K, is partitioned into:  
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where R
i
 and Rj  are the number of correct responses for students i and j, respectively; Rij  is the number of items both 

students answered correctly;Wij is the number of items both students answer incorrectly; and wij  is the number of items in 
which both students gave matching incorrect answers. 
 
 
Under chance conditions, the expected number of items answered correctly by both students would be the proportion of all 
items answered correctly by student i multiplied by the number of items answered correctly by student j: 
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Thus, the regression of Rij  on the product RiRj  is of interest.  This regression line can be written as: 

R̂ij = br1RiRj + br0  

The distance of an observed point RiRj
,R

ij( )  from the regression line can be used to evaluate the observed degree of 

correspondence between the items answered correctly by a pair of students.  If this distance exceeds ts
r

, where t is the 
appropriate value from the t-distribution and s

r
is an appropriate estimate of the standard error of estimate of Rij , then the 

assumption of chance correspondence can be rejected at a specified confidence level (assuming a bivariate normal 
distribution of Rij  and RiRj ).  A correspondence index can be written as: 

CI =
Rij ! br1RiRj ! br0

tsr
 

A correspondence index greater than 1.00 is equivalent to rejecting the null hypothesis of chance correspondence between the 
items answered correctly by a pair of students. 
 
The same logic is used to determine the correspondence between the incorrect answers from two students.  If each item has k 
possible responses, the expected number of matching incorrect answers due to chance is: 
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Using the regression of wij  on Wij , the correspondence index would be: 

CI =
wij ! bw1Wij ! bw0

tsw
 

 
Saupe suggests an advantage to analyzing the correspondence of correct and incorrect answers separately is that the evidence 
provided by both indices is non-overlapping and, therefore, complementary. In applying his model to a random sample of 
150 pairs of tests, Saupe’s correspondence indices identified 6 suspicious pairs.  In an attempt to validate the results, Saupe 
examined seating charts and discovered that 5 of the 6 suspicious pairs came from students in adjacent seats.  Saupe admits 



the main disadvantage of his method is its use of a chance model – it is not reasonable to assume students randomly answer 
test questions (Saupe, 1960). 
 
Attempting to overcome this disadvantage, Angoff (1974) developed 8 more indices to detect examinees copying on tests.  
Angoff’s methods were all based on developing distributions of identical responses made by pairs of non-cheating 
examinees.  The methods only differ in the combinations of independent and dependent variables used to develop the 
bivariate distributions.  The degree to which an examinee’s observed value on the dependent variable, conditioned on the 
observed value of the independent variable, deviates from the mean of the dependent variable from the distribution provides 
an index of cheating. 
 
Angoff found that six of his indices were not effective in detecting cheating.  Of the remaining indices, Angoff favored the 
method called the B Index.  To use this index, the bivariate distribution of Wi

W
j  and Qij  is estimated from all examinees, 

where Wi
W

j  is the product of the number of incorrect answers from two examinees and Qij  is the number of identical 

incorrect answers for both examinees.  For a pair of examinees, A and B, the observed values W
a
W

b
 and Qab  are calculated.  

The following test statistic can then be used to determine whether the observed value of Qab  is significantly different from 
the mean value of Qij : 

t =
Qab !Qij

SQij "WiWj

. 

 
While Saupe and Angoff used information from both incorrect and correct responses, Frary (1977) developed two indices 
based on estimating the probability of an examinee choosing a correct response, choosing each incorrect response, or 
choosing to omit each item.  After dismissing his first index, Frary developed the following formula for his g

2
 index: 
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where C  is the number of identical answers for a pair of examinees and P̂ k
ia
= k

ib( )  is the probability that an examinee 
would choose the identical response of another examinee.  Frary used piecewise linear functions of total test scores to 
estimate this probability.   
 
After applying his method to actual test data and recommending its use to prevent cheating, Frary acknowledged three 
limitations.  First, in order to use his method, one examinee must be identified as “the copier” and another examinee must be 
identified as “the source.”  This will not always be practical in large-scale testing situations.  Second, the g2 index assumes 
that the probabilities of an examinee choosing each response to an item are constant, regardless of examinee ability.  Third, 
Frary found that his method decreased in effectiveness for easier tests, stating, “If no examinees can answer as many as 90% 
correctly, the potential for detection is greatly enhanced” (Frary, 1977, p.253).    

 
Hanson and Brennan (1987) continued to compare responses between pairs of examinees in their development of two more 
indices to detect possibly copying.  The first method, Pair 1, uses the number of identical incorrect responses between a pair 
of examinees along with the length of the longest string of identical responses.  The second method, Pair 2, uses the same 
information along with the percentage of maximum possible identical incorrect responses between two examinees. 
 
In comparing their methods to the methods developed by Angoff (1974) and Frary (1977) on a simulated data set, Hanson 
and Brennan conclude that “it might not make a great deal of difference which of the statistical methods of investigating 
copying considered here are used” (p. 21).  They do, however, recommend their method based on the interpretability of their 
indices. 

 
 
Controlling for False Positives 

In evaluating the effectiveness of the previously developed indices, Post (1994) concludes that while the indices may be used 
to scan for potential cheaters, “many existing statistical tests designed to detect copying on multiple-choice exams understate 
the Type I [false positive] error” (p. 140).  Because this Type 1 error may be higher than specified, Post discourages using the 
indices to make accusations of cheating.  Post attributes this inflated Type I error rate to the difficulty in estimating the 
probability of an examinee choosing each possible response to an item. 



 
In an attempt to improve the estimation of item response probabilities and reduce the Type I error rate, Wesolowsky (2000) 
made a slight modification to Frary’s method.  Whereas Frary used piecewise linear functions of raw scores to estimate 
probabilities, Wesolowsky uses smooth distance iso-contours from location theory for estimation (p. 912).  Also, while 
previous methods made assumptions about which examinee copied from another, Wesolowky’s method simply examines the 
number of matching answers and ignores other suspicious patterns such as strings of identical answers.  In developing a 
computer program to analyze answer sheets and employing a Bonferroni adjustment to control for overall Type I error rate, 
Wesolosky recommends his method as an effective way to screen for potential cheaters.  This method, used in 2007 to scan 
for cheaters on the Texas Assessment of Knowledge and Skills, flagged more than 50,000 examinees as potentially having 
cheated (Benton & Hacker, 2007a, 2007b). 

 
 
Incorporating Item Response Theory 

Other researchers improved the estimation of the probability of an examinee choosing each possible response to an item by 
developing indices based on item response theory (IRT) models.  In IRT models, the probability of an examinee choosing 
each response to an item is a function of the examinee’s latent ability, ! , and characteristics of each possible item response.  
The item response characteristics of interest depend on the IRT model being used. 
 
For the three-parameter logistic model, the probability of examinee a  correctly answering dichotomously scored item i  can 
be expressed as:   
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a   the item discrimination parameter 
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!  the latent ability of examinee a  

=
i
u   the examinee’s scored response to the item 
 
Using maximum likelihood or Bayesian methods, values for the item response and examinee ability parameters can be 
estimated under the assumptions of the specified IRT model.  Under the assumption of local independence, the probability of 
observing a string of n  item responses from an examinee with ability 
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individual item responses: 
 

)1(

1
21 )1()|,...,,( ii u

i

u

i

n

i
n

PPuuuP
!

=
!"=# . 

 
Thus, given an observed string of responses from an examinee, the above formula can be used to estimate the likelihood of 
observing that response string or the probability of observing a different string of responses.  
 
Rather than simply estimating the probability of an examinee answering dichotomously scored items correctly or incorrectly, 
IRT models can be used to estimate the probability of an examinee choosing each possible choice to a multiple-choice item.  
Bock’s Nominal Model calculates the probability of choosing response u on multiple-choice item g with m possible 
responses as: 
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where !

h
 represents a scale value directly related to the probability that response h is chosen on a specific test item.  This 

model can be reparameterized as: 
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from which item response discrimination and difficulty parameters, a and c, and examinee ability parameter !  can be 
estimated.  Again, under the local independence assumption, the probability of observing a specific string of item responses 
can be estimated from these item response and examinee ability estimates. 
 
 

Person-Fit and Aberrant Response Indices 
The application of IRT models to detect possible cheating has been theorized via person-fit and aberrant response indices.  
These indices measure the extent to which the observed pattern of responses from an examinee with ability level (!) deviates 
from the response pattern expected under the chosen IRT model.  For example, an examinee whose ability exceeds the 
difficulty level (b)  of an item would have a high probability of answering that item correctly.  Likewise, an examinee whose 
ability is less than the difficulty of an item would have a high probability of answering that item incorrectly.  When an 
examinee’s response string fits this pattern across most or all items on the test, the model “fits” the person.  Aberrant 
response strings (high-ability examinees incorrectly answering easy items, low-ability examinees correctly answering 
difficult items, or examinees choosing unusual responses on a multiple-choice test) indicate poor model fit.  Person-fit and 
aberrant response indices measure the degree to which the chosen IRT model fits the observed responses from an examinee. 
 
More than fifty person-fit indices have been developed to detect aberrant responders (Karabatsos, 2003; Meijer & Sijtsma, 
2001; Thiessen, 2007).  These indices, displayed in FIGURE ABERRANT, attempt to detect students who provide unusual 
responses due to luck, language deficiencies, random guessing, low-motivation, misaligned answer sheets, or cheating 
(Meijer, 1996; Thiessen, 2004). 
 
Person-fit indices can be classified into three categories: deviation-based, covariance-based, and likelihood-based.  
Deviation-based indices, such as Wright and Stone’s (1979) Outfit Mean Square index, sum the squared standardized 
differences between an examinee’s scored response to an item and the expected probability of that correct response.  A large 
difference would indicate a disagreement between the model and the examinee. 
 
Covariance-based indices, such as Tatsuoka’s (1984) Extended Caution Indices, measure the degree to which an examinee’s 
item responses deviate from the Guttman Perfect Pattern.  Specifically, these indices calculate the ratio of the covariance 
between an examinee’s responses and item difficulty estimates to the covariance between the average probability of correct 
responses across all examinees (estimated via IRT models) and the item difficulty estimates. 
 
Likelihood-based indices, such as Levine and Rubin’s (1979) log-likelihood function 

0
l , evaluate the shape of a likelihood 

function.  Given an examinee’s responses to a set of test items with known item parameters (a, b, c), the ability level of an 
examinee )(

a
!  can be estimated by maximizing the likelihood function: 
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The value of 
a

!  that maximizes this function represents the examinee’s most likely ability level given the observed item 
responses and the estimated item parameters.  Examinees whose item responses conform to the IRT model produce 
likelihood functions with relatively high maximum values.  Examinees whose responses deviate from what is predicted by 
the IRT model produce low maximum values of the likelihood function (Davey, et. al, 2003, p.6).  Thus, the relative 
magnitude of 

0
l  can be used to identify examinees whose responses are aberrant. 

 
 

Aberrant Response Indices to Detect Examinee Cheating 
While person-fit indices detect many forms of aberrance, some indices were developed specifically to detect examinee 
cheating.  The first set of these indices is referred to as optimal person-fit statistics.  Levine and Drasgow’s (1988) )(x!  
index was developed to test the null hypothesis of normal examinee responses (based on a chosen IRT model) against the 
alternative hypothesis that an examinee’s responses are consistent with a specific aberrant response model.  Thus, if a 
researcher can specify and estimate an alternative hypothesis of examinee cheating, optimal person-fit statistics can provide 
the maximum detection rate for aberrance (Krabatsos, 2003, p. 282). 

 



Unfortunately, studies have shown that aberrant response indices are ineffective at detecting cheating (Chason & 
Maller, 1996; Iwamoto, Nungester, & Luecht, 1996).  Demonstrating this ineffectiveness, test security firm Caveon 
analyzed a simulated data set using their six aberrant response indices.  With the data set simulated so that 
examinees cheat on 10% of the test items, the firm’s six aberrant response indices were only able to detect 41 (1.2%) 
of the 3,283 simulated cheaters and none of the five simulated cheating schools (Impara, et al., 2005).   
 
Wollack argues that IRT-based aberrant response indices are inadequate in detecting cheating (specifically, student 
copying) because the statistical significance of these indices “does not depend on the similarity between the 
suspected copier’s responses and those of a neighboring examinee” (p. 307).  He stated that previous attempts to 
detect cheating, based on Classical Test Theory (CTT), are also inadequate.  Wollack argues that since CTT item 
statistics are dependent on the sample of examinees tested, the expected similarity between a pair of examinees 
depends “largely on the performance of the other examinees in the sample, rather than only on the two examinees of 
interest” (p. 307).  In order to overcome the apparent limitations of CTT-based indices and IRT-based aberrant 
response indices, Wollack developed his ω-index to specifically detect copying. 
 
The ω-index is similar to Frary’s g2 index in that it attempts to estimate the probabilities associated with each 
possible item response.  It differs from the g2 index in that it uses Bock’s Nominal Model to model these 
probabilities.  The ω-index also attempts to control for Type I errors by examining the seating chart used in test 
administration and analyzing only pairs of examinees who sit physically close enough to make copying possible. 
 
In applying the ω-index, each examinee is analyzed as a possible copier.  If the test is administered in a classroom 
with a rectangular seating chart, the examinees sitting to the copier’s left, right, front left, front center, or front right 
are analyzed as potential sources for copying.  Assuming item responses are locally independent, as is necessary to 
use IRT models, the expected number of identical responses and its associated variance can be modeled with the 
binomial distribution.  Thus, an index similar to the g2 can be compared to the standard normal distribution to 
evaluate the statistical significance of the degree of similarity between two examinees’ item responses: 
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where C is the number of identical answers for a pair of examinees and  P̂ k
ia
= k

ib( )  is the probability that examinee a 

would choose the identical response of examinee b given the ability !
a

 of examinee a, the item responses K
b

 of examinee 

b, and the matrix of item parameters, ! . 
 
Wollack (1997) compared his index to Frary’s g2 index on two data sets with three types of simulated copiers.  The first type 
of copying was random copying, in which randomly selected items were simulated as being copied from another examinee.  
The second type was difficulty-weighted copying, in which the more difficult items were simulated as being copied.  The 
third type was random-strings copying, in which strings of 4 consecutive items were simulated as being copied.  Between 10-
40% of items were simulated as being copied by 5% of examinees for each type of copying.  Wollack ensured that in this 
simulation, simulated copiers copied answers from examinees with higher ability estimates sitting close to them, as would be 
expected in reality.  Based on these simulations, Wollack concludes that the ω-index is more effective in both detecting 
copying and controlling Type 1 error rates than the g2 index when a seating chart is available (Wollack, 1997, p.312). 
 
 

Adjacent Seating Methods 
Similar to Wollack’s ω-index, Kvam (1996), Roberts (1987), and the National Board of Medical Examiners (Cizek, 1999) 
developed methods that require knowledge about which examinees sat adjacent to others.  In applying Kvam’s method, 
examinees in a classroom are randomly administered two forms of the exam.  Minor changes are made to the questions so 
that the two multiple-choice forms have different answers.  After administering the exams, maximum likelihood methods are 
used to estimate the probability that an examinee copies an item response from an adjacently-seated source given that the 
examinee does not formulate an answer to the question (Kvam, 1996, p.239). 
 



The score-difference method developed by Roberts (1987) also relies on two test forms randomly administered to examinees.  
After administering the test forms, each answer sheet is scored using the answer keys from both test forms.  The difference 
between the scores obtained from the two answer keys provides an indication of possible cheating.  While conceptually 
simple, Roberts concludes that his method is “seriously flawed and has little to recommend” (p. 77). 
 
In administering its exams, the National Board of Medical Examiners (NBME) uses two methods to detect potential cheating.  
The first method, adjacent-nonadjacent analysis, requires the test to consist of at least two parallel parts.  Each part must be 
administered in separate testing sessions in which test takers are randomly assigned to seat locations.  Under these conditions, 
it is expected that the response patterns from any two examinees would have the same degree of similarity regardless of 
where the examinees are seated.  If two examinees are seated adjacently during at least one test session and it is discovered 
that their responses are more similar in those sessions than would be expected if they were seated apart, then potential 
copying has been detected. 
 
The NBME method uses a simple 2x2 chi-square test for independence to detect potential cheaters.  The test statistic is 
calculated from the following table using the given formula, and then evaluated for significance: 
 

 Number of items answered incorrectly  

Seating Location Identical Responses Different Responses Total 

Adjacent a b (a+b) 

Nonadjacent c d (c+d) 

Total (a+c) (b+d) (a+b+c+d) 
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2
=
(a + b + c+ d)(ad " bc)2

(a + b)(a + c)(b + d)(c+ d)
 

 
The NBME method uses a simple 2x2 chi-square test for independence to detect potential cheaters.  The test statistic is 
calculated from the following table using the given formula, and then evaluated for significance: 
 
 
 

Methods to Detect Educator Cheating 
The previously discussed methods all attempt to detect cheating (usually in the form of copying) by students on tests.  Only 
two serious attempts have been made to detect potential educator cheating on tests.  The first method, erasure analysis, is 
currently used by several states in auditing their testing programs.  The second method, developed by Jacob and Levitt 
(2003), was used to detect cheating educators in Chicago Public Schools. 
 
Some erasure analysis methods attempt to detect cheating by identifying answer sheets with an unusual number or pattern of 
erasures.  It is assumed that a large number of erased answers might indicate an educator who is manipulating answer sheets.  
Other erasure analysis methods only look at wrong-to-right erasures – items in which an incorrect answer was erased and 
changed to a correct answer. 
 
The Louisiana Educational Assessment Program has written and implemented erasure analysis procedures to audit its state 
testing program.  These procedures require the test scoring contractor to scan every answer sheet for wrong-to-right erasures 
and compute the mean and standard deviation for each subject at each grade level.  The scoring contractor must then flag 
examinees whose wrong-to-right erasures exceed the state mean by more than four standard deviations as potential cheaters.  
The number of erasures for each potential cheater, along with the proportion of wrong-to-right erasures found on their answer 
sheet, are then reported to the State Superintendent of Education and the scores from the potential cheaters are voided from 
official records (Louisiana Educational Assessment Program, 2003). 
 
One problem with using erasure analysis to flag potential cheaters is determining how many erasures indicate potential 
cheating.  To address this problem, Qualls (2001) examined 4,553 answer sheets from the 1995-96 administration of the Iowa 
Tests of Basic Skills to determine the typical erasure behavior of examinees in a low-stakes testing environment.  Qualls 
found that more than 90% of examinees changed 3 or fewer answers per test and only 2% of examinees changed more than 6 
responses.  While the erasure behavior depended on the test subject, less than 7% of item responses were erased, on average.  
Furthermore, the results indicate that it would be rare for an examinee to erase and change more than 15% of items on a 
single test.  Qualls found that the first or second items on the test were most frequently erased and that students with one 
erasure had about a 50% chance of changing an incorrect response to a correct response.  In a focus on wrong-to-right 
erasures, Qualls found that examinees gained an average of between 0.167 and 0.494 points per erasure on the tests.  Perhaps 
these results could be used to develop new and improve upon current erasure analysis methods for high-stakes tests. 



 
Jacob & Levitt Methods to Detect Educator Cheating 
 

Detecting Educator Cheating 
While several statistical indices have been developed to detect student cheating, there is a need to develop indices to detect 
educator cheating.  Whereas student cheating can invalidate one test score, an educator who cheats can invalidate an entire set 
of test scores at once. 
 
The only attempt to detect educator cheating on large-scale standardized tests was completed by Jacob & Levitt in 2003.  Jacob 
& Levitt set out to create a statistical index to identify educators, specifically teachers, who manipulate answersheets (which is 
the most blatant and least-used form of educator cheating).  After developing their index, they analyzed Iowa Tests of Basic 
Skills scores from Chicago public schools.  They conclude their research by stating, “Empirically, we detect cheating in 
approximately 4 to 5 percent of the classes in our sample” (Jacob & Levitt, 2003, p. 846). 
 
The method used by Jacob & Levitt to detect potential cheating teachers is actually a combination of two indicators: (1) 
unexpected test score fluctuations and (2) unexpected patterns in student answers.  Rather than focus on individual students, 
these indices are calculated at the classroom level. 

 
Index #1:  Unusual Test Score Fluctuations 
 
On a vertically scaled test like the ITBS, we expect student test scores to increase by a relatively constant rate each year.  The 
test score gains depend on a variety of factors (student ability, curriculum, teacher quality, etc.), but most students will 
experience growth in achievement each year.  An unexpected test score fluctuation would occur when many students in a 
classroom experience large score gains one year followed by small gains (or even negative growth) the next year.  To calculate 
this unexpected test score fluctuation index, Jacob & Levitt do the following: 
 

• If we are interested in determining if a teacher manipulated answersheets during the “Year t” test administration, we must 
gather test scores for year t, the previous year (t-1) and the next year (t+1). 

 
• Find the average test score gains (in grade equivalent units) for all students in each classroom (the gain from year t-1 to year t 

along with the gain from year t to year t+1).   
 
• Find the percentile rank of each classroom’s average test score gains relative to all other classrooms in that same subject, 

grade, and year.  The percentile rank of growth from year t-1 to year t will be called “rank gaint” while the rank of growth 
from year t to year t+1 will be called “rank gaint+1” 

 
• The index is calculated as: Index #1 = (rank gaint )

2
+ (1! rank gaint+1)2 .  As the formula shows, classrooms with 

relatively large score gains followed by low gains the next year will yield large values of this index.  The percentile ranks are 
squared in computing the index to give relatively more weight to big score gains and big score declines.   

 
• Teachers whose classrooms yield values in the top 95th percentile of this index are identified as having unusual test score 

fluctuations. 
 
Table 2 shows an example of this index.  The test score gains for three classrooms are displayed.  Classroom 1 represents an 
average classroom, growing from 2.9 to 4.1 to 5.2 grade equivalent units over the course of two years.  Classroom 2 represents 
a classroom with an excellent teacher (during year t).  This excellent teacher was able to drastically increase test scores from 
year t-1 to year t.  The teacher of Classroom 3 also was able to get drastic increases in test scores.  The difference between 
Classrooms 2 and 3 can be seen by the changes in test scores once the students moved on to the next grade (with a different 
teacher).  Whereas the students from Classroom 2 were able to build upon their score gains (as we would expect from students 
who were taught by an excellent teacher), the students in Classroom 3 experienced test score declines.  This decline in test 
scores may indicate that the gains experienced the previous year did not represent genuine gains in achievement.  Thus 
Classroom 3 earns a high score on Index #1 and the teacher of that classroom is identified as a potential cheater. 



 

Table 2:  Example of Index #1 

 Avg. Grade Equivalent 
For Classroom Change in Grade Equivalent Units 

 t-1 t t+1 From t-1 to t 
(%ile rank) 

From t to t+1 
(%ile rank) 

Index #1 
(%ile rank) 

Classroom 1 2.9 4.1 5.2 1.2 
(59) 

1.1 
(56) 

0.54 
(20) 

Classroom 2 3.4 5.5 6.8 2.1 
(92) 

1.3 
(77) 

0.8993 
(70) 

*Classroom 3* 3.1 5.2 4.7 2.1 
(92) 

-0.5 
(1) 

1.8265 
(99*) 

Avg. Classroom 3.3 4.4 5.3 1.1 0.9  

 
Jacob & Levitt experienced with other measures of unusual test score fluctuations (such as regressing test score gains on 
previous gains and student demographics).  They concluded that these other, more complicated measures yielded information 
similar to their simple index.   

 
Index #2:  Unexpected Patterns in Student Answers 
 
Unusual fluctuations in test scores do not prove that a teacher manipulated student answersheets.  In fact, since the 95th 
percentile is used as a cut-off, Index #1 will always identify 5% of the classrooms as having unusual fluctuations.  To determine 
which of these classrooms cheated (and which just experienced improbable fluctuations), Jacob & Levitt developed a second 
index to identify unexpected patterns in student answers. 
 
The logic is this:  The quickest way for a teacher to cheat is to alter the same block of consecutive items for students in the class 
(or instruct students in the classroom to change their answers to the same set of items).  Thus, if a classroom experiences 
unusual test score fluctuations and the students in the classroom have unusual answer patterns (identical answers to the same 
block of items or unexpected correct answers to difficult items), then we have more reason to believe the teacher cheated. 
 
To identify unexpected answer patterns, the researchers combine four measures of suspicious answer strings to calculate Index 
#2.  These four measures will be briefly discussed: 
 

•  The first measure focuses on identifying the most unlikely block of identical answers given by students on consecutive items.  
Using a multinomial logit model, the likelihood of each student choosing each possible answer on every item is calculated.  
This likelihood is based on the student’s past test scores, future test scores, and demographic (gender, race, etc).  All 
combinations of students and consecutive items are searched to find the block of identical answers that were least likely to 
have arisen by chance (controlling for classroom size). 

 

 Given student s in classroom c with answer j on item i, the model is: 

!
=

==
J

j

X

X

isc

sj

sj

e

e
jYP

1

)(
"

"

 

 
 Where X represents the vector of past test scores, future test scores, and demographics. 
 

The likelihood of a student’s answer string for item m to item n is calculated as: !
=

=
n

mi

isc

mn

sc
PP  

 
This likelihood is multiplied across students in the class with identical responses in the string: !=

string identical with students

~ mn

sc

mn

sc
PP  

 
If each student in the classroom has unique responses from item m to item n, then there will be a distinct value of this index 
for each student in the class.  If all students in the classroom have identical responses across these items, then there will only 
be one value of this index (and the value will be extremely small). 
 
The calculations are repeated for all strings from a length of 3 items to a length of 7 items.   



 
Notice that the values of yielded by these calculations will be smaller as: (1) the number of students with identical responses 
increase, (2) the length of the string of identical responses increase.  Thus, smaller values are associated with more improbable 
answer strings within a classroom. 

 
The minimum value of this measure for each classroom is recorded as measure #1: 
 

)
~

(min  #1 Measure s
mn

sc
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•  The second measure calculates the degree of correlation in student responses across the test, especially for unexpected 
answers.  The logic is that teachers who cheat will have students with highly correlated answers.  To calculate this measure, 
the residuals for each item choice are calculated: 
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Then, the residuals for each option are summed across students within the classroom: !=

s

ijscejic
e  

 
The option residuals for the classroom are then summed for each item.  At the same time, the residuals are (1) squared to 
accentuate outliers and (2) divided by the number of students in the class to normalize for class size (n): 
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Measure #2 is simply the average of these item residual values.  Higher values indicate classrooms with highly correlated 
answers. 
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•  The third measure calculates the variance in the degree of correlation across test items.  With Measure #2, we might expect 
high correlations among student answers if a teacher emphasizes certain topics during the school year.  If a teacher cheats by 
changing answers for multiple students on selected questions, the within-class correlation on those particular questions will be 
extremely high, while the degree of within-class correlation on other questions is likely to be typical.  Thus, a teacher who 
change answers on selected items will have a classroom with a large degree of variance in the correlation of responses across 
items. 

 
 This measure is calculated as the variance of item residuals from Measure #2: 
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• The fourth measure compares the answers of students within a classroom to the answers from other equally-able students in 

the sample.  This measure can then detect students who miss easy items while answering difficult items correctly.  Students 
whose answers follow this pattern may have had their answers influenced by a cheating teacher.  

 
To calculate this measure, students are grouped by their total number correct scores on the test.  Let 

s
A  represent a specific 

total correct score.  Let qic = 1  if a particular student answers item i correctly and zero otherwise.  Then determine the 

proportion of students with total score 
s
A  who answered each item correctly (call this quantity Aq ). 



 
The deviations between a student’s item score and the expected item score (based on equally-abled students) are squared and 
summed across items: ! "=

2)( Aiscsc qqZ  

This deviation between this Z-value for each student and the average Z-value for all equally-abled students is then summed for 
all students within a classroom.  Thus,  high values of this index indicate the answers from a large number of students in the 
classroom deviated from equally-abled students in other classrooms. 
 

! "= )(Z  #4 Measure sc A
Z  

 
 
After completing the calculations, the classrooms are ranked on each of the four measures.  The percentile ranks for each 
classroom on each measure are then combined to form the second index: 

Index #2 = (Measure 1 rank)
2
+ (Measure 2 rank)

2
+ (Measure 3 rank)

2
+ (Measure 4 rank)

2  
Classrooms falling above the 95th percentile on this index are identified as having unusual answer patterns.  

 
 

Putting It Together:  Detecting Potential Cheating Classrooms 
Jacob & Levitt argued that taken individually, the above two indices do not detect teachers who manipulate answersheets.  
After all, there are always going to be (innocent) classrooms with unexpected score fluctuations and there are going to be 
(innocent) classrooms with improbable answer patterns.  The key is to identify classrooms that yield high values on both 
indices. 
 
In non-cheating classrooms, there is no reason to believe that the two indices would have a strong correlation.  If a teacher 
manipulates student answersheets, we would expect a strong correlation between the two indices.  Therefore, educators 
whose classrooms appear above the 95th percentile on both indices are identified as potential cheaters. 

  (Thiessen, 2006) 
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