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An Intuitive Explanation of Bayes'
Theorem
Bayes' Theorem
for the curious and bewildered;
an excruciatingly gentle introduction.

Your friends and colleagues are talking about something called
"Bayes' Theorem" or "Bayes' Rule", or something called Bayesian
reasoning.  They sound really enthusiastic about it, too, so you
google and find a webpage about Bayes' Theorem and...

It's this equation.  That's all.  Just one equation.  The page you found
gives a definition of it, but it doesn't say what it is, or why it's useful,
or why your friends would be interested in it.  It looks like this
random statistics thing.

So you came here.  Maybe you don't understand what the equation
says.  Maybe you understand it in theory, but every time you try to
apply it in practice you get mixed up trying to remember the
difference between p(a|x) and p(x|a), and whether
p(a)*p(x|a) belongs in the numerator or the denominator.  Maybe
you see the theorem, and you understand the theorem, and you can
use the theorem, but you can't understand why your friends and/or
research colleagues seem to think it's the secret of the universe. 
Maybe your friends are all wearing Bayes' Theorem T-shirts, and
you're feeling left out.  Maybe you're a girl looking for a boyfriend,
but the boy you're interested in refuses to date anyone who "isn't
Bayesian".  What matters is that Bayes is cool, and if you don't know
Bayes, you aren't cool.

Why does a mathematical concept generate this strange enthusiasm
in its students?  What is the so-called Bayesian Revolution now
sweeping through the sciences, which claims to subsume even the
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sweeping through the sciences, which claims to subsume even the
experimental method itself as a special case?  What is the secret
that the adherents of Bayes know?  What is the light that they have
seen?

Soon you will know.  Soon you will be one of us.

While there are a few existing online explanations of Bayes' Theorem,
my experience with trying to introduce people to Bayesian reasoning
is that the existing online explanations are too abstract.  Bayesian
reasoning is very counterintuitive.  People do not employ Bayesian
reasoning intuitively, find it very difficult to learn Bayesian reasoning
when tutored, and rapidly forget Bayesian methods once the tutoring
is over.  This holds equally true for novice students and highly trained
professionals in a field.  Bayesian reasoning is apparently one of
those things which, like quantum mechanics or the Wason Selection
Test, is inherently difficult for humans to grasp with our built-in
mental faculties.

Or so they claim.  Here you will find an attempt to offer an intuitive
explanation of Bayesian reasoning - an excruciatingly gentle
introduction that invokes all the human ways of grasping numbers,
from natural frequencies to spatial visualization.  The intent is to
convey, not abstract rules for manipulating numbers, but what the
numbers mean, and why the rules are what they are (and cannot
possibly be anything else).  When you are finished reading this page,
you will see Bayesian problems in your dreams.

And let's begin.

Here's a story problem about a situation that doctors often encounter:

1% of women at age forty who participate in routine screening
have breast cancer.  80% of women with breast cancer will
get positive mammographies.  9.6% of women without breast
cancer will also get positive mammographies.  A woman in
this age group had a positive mammography in a routine
screening.  What is the probability that she actually has breast
cancer?

What do you think the answer is?  If you haven't encountered this
kind of problem before, please take a moment to come up with your
own answer before continuing.

Next, suppose I told you that most doctors get the same wrong
answer on this problem - usually, only around 15% of doctors get it



answer on this problem - usually, only around 15% of doctors get it
right.  ("Really?  15%?  Is that a real number, or an urban legend
based on an Internet poll?"  It's a real number.  See Casscells,
Schoenberger, and Grayboys 1978; Eddy 1982; Gigerenzer and
Hoffrage 1995; and many other studies.  It's a surprising result which
is easy to replicate, so it's been extensively replicated.)

Do you want to think about your answer again?  Here's a Javascript
calculator if you need one.  This calculator has the usual precedence
rules; multiplication before addition and so on.  If you're not sure, I
suggest using parentheses.

Calculator: 

 Result: 

 Compute!

On the story problem above, most doctors estimate the probability to
be between 70% and 80%, which is wildly incorrect.

Here's an alternate version of the problem on which doctors fare
somewhat better:

10 out of 1000 women at age forty who participate in routine
screening have breast cancer.  800 out of 1000 women with
breast cancer will get positive mammographies.  96 out of
1000 women without breast cancer will also get positive
mammographies.  If 1000 women in this age group undergo a
routine screening, about what fraction of women with positive
mammographies will actually have breast cancer?

Calculator: 

 Result: 

 Compute!

And finally, here's the problem on which doctors fare best of all, with
46% - nearly half - arriving at the correct answer:

100 out of 10,000 women at age forty who participate in
routine screening have breast cancer.  80 of every 100 women
with breast cancer will get a positive mammography.  950 out
of  9,900 women without breast cancer will also get a positive
mammography.  If 10,000 women in this age group undergo a
routine screening, about what fraction of women with positive
mammographies will actually have breast cancer?

(1 + 2) * 3 + 4

(1 + 2) * 3 + 4



Calculator: 

 Result: 

 Compute!

The correct answer is 7.8%, obtained as follows:  Out of 10,000
women, 100 have breast cancer; 80 of those 100 have positive
mammographies.  From the same 10,000 women, 9,900 will not have
breast cancer and of those 9,900 women, 950 will also get positive
mammographies.  This makes the total number of women with
positive mammographies 950+80 or 1,030.  Of those 1,030 women
with positive mammographies, 80 will have cancer.  Expressed as a
proportion, this is 80/1,030 or 0.07767 or 7.8%.

To put it another way, before the mammography screening, the
10,000 women can be divided into two groups:

Group 1:  100 women with breast cancer.
Group 2:  9,900 women without breast cancer.

Summing these two groups gives a total of 10,000 patients,
confirming that none have been lost in the math.  After the
mammography, the women can be divided into four groups:

Group A:  80 women with breast cancer, and a positive
mammography.
Group B:  20 women with breast cancer, and a negative
mammography.
Group C:  950 women without  breast cancer, and a positive
mammography.
Group D:  8,950 women without breast cancer, and a negative
mammography.

Calculator: 

 Result: 

 Compute!

As you can check, the sum of all four groups is still 10,000.  The sum
of groups A and B, the groups with breast cancer, corresponds to
group 1; and the sum of groups C and D, the groups without breast
cancer, corresponds to group 2; so administering a mammography
does not actually change the number of women with breast cancer. 
The proportion of the cancer patients (A + B) within the complete set
of patients (A + B + C + D) is the same as the 1% prior chance that
a woman has cancer: (80 + 20) / (80 + 20 + 950 + 8950) = 100 /
10000 = 1%.

The proportion of cancer patients with positive results, within the
group of all patients with positive results, is the proportion of (A)
within (A + C):   80 / (80 + 950) = 80 / 1030 = 7.8%.  If you
administer a mammography to 10,000 patients, then out of the 1030

(1 + 2) * 3 + 4

80 + 20 + 950 + 8950



administer a mammography to 10,000 patients, then out of the 1030
with positive mammographies, 80 of those positive-mammography
patients will have cancer.  This is the correct answer, the answer a
doctor should give a positive-mammography patient if she asks about
the chance she has breast cancer; if thirteen patients ask this
question, roughly 1 out of those 13 will have cancer.

The most common mistake is to ignore the original fraction of women
with breast cancer, and the fraction of women without breast cancer
who receive false positives, and focus only on the fraction of women
with breast cancer who get positive results.  For example, the vast
majority of doctors in these studies seem to have thought that if
around 80% of women with breast cancer have positive
mammographies, then the probability of a women with a positive
mammography having breast cancer must be around 80%.

Figuring out the final answer always requires all three pieces of
information - the percentage of women with breast cancer, the
percentage of women without breast cancer who receive false
positives, and the percentage of women with breast cancer who
receive (correct) positives.

To see that the final answer always depends on the original fraction
of women with breast cancer, consider an alternate universe in which
only one woman out of a million has breast cancer.  Even if
mammography in this world detects breast cancer in 8 out of 10
cases, while returning a false positive on a woman without breast
cancer in only 1 out of 10 cases, there will still be a hundred
thousand false positives for every real case of cancer detected.  The
original probability that a woman has cancer is so extremely low that,
although a positive result on the mammography does increase the
estimated probability, the probability isn't increased to certainty or
even "a noticeable chance"; the probability goes from 1:1,000,000 to
1:100,000.

Similarly, in an alternate universe where only one out of a million
women does not have breast cancer, a positive result on the
patient's mammography obviously doesn't mean that she has an 80%
chance of having breast cancer!  If this were the case her estimated
probability of having cancer would have been revised drastically
downward after she got a positive result on her mammography - an
80% chance of having cancer is a lot less than 99.9999%!  If you
administer mammographies to ten million women in this world, around
eight million women with breast cancer will get correct positive
results, while one woman without breast cancer will get false positive
results.  Thus, if you got a positive mammography in this alternate
universe, your chance of having cancer would go from 99.9999% up
to 99.999987%.  That is, your chance of being healthy would go from



to 99.999987%.  That is, your chance of being healthy would go from
1:1,000,000 down to 1:8,000,000.

These two extreme examples help demonstrate that the
mammography result doesn't replace your old information about the
patient's chance of having cancer; the mammography slides the
estimated probability in the direction of the result.  A positive result
slides the original probability upward; a negative result slides the
probability downward.  For example, in the original problem where 1%
of the women have cancer, 80% of women with cancer get positive
mammographies, and 9.6% of women without cancer get positive
mammographies, a positive result on the mammography slides the
1% chance upward to 7.8%.

Most people encountering problems of this type for the first time carry
out the mental operation of replacing the original 1% probability with
the 80% probability that a woman with cancer gets a positive
mammography.  It may seem like a good idea, but it just doesn't
work.  "The probability that a woman with a positive mammography
has breast cancer" is not at all the same thing as "the probability that
a woman with breast cancer has a positive mammography"; they are
as unlike as apples and cheese.  Finding the final answer, "the
probability that a woman with a positive mammography has breast
cancer", uses all three pieces of problem information - "the prior
probability that a woman has breast cancer", "the probability that a
woman with breast cancer gets a positive mammography", and "the
probability that a woman without breast cancer gets a positive
mammography".

Fun
Fact!

Q.  What is the Bayesian Conspiracy?
A.  The Bayesian Conspiracy is a
multinational, interdisciplinary, and shadowy
group of scientists that controls publication,
grants, tenure, and the illicit traffic in grad
students.  The best way to be accepted into
the Bayesian Conspiracy is to join the
Campus Crusade for Bayes in high school or
college, and gradually work your way up to
the inner circles.  It is rumored that at the
upper levels of the Bayesian Conspiracy exist
nine silent figures known only as the Bayes
Council.

To see that the final answer always depends on the chance that a
woman without breast cancer gets a positive mammography,



woman without breast cancer gets a positive mammography,
consider an alternate test, mammography+.  Like the original test,
mammography+ returns positive for 80% of women with breast
cancer.  However, mammography+ returns a positive result for only
one out of a million women without breast cancer - mammography+
has the same rate of false negatives, but a vastly lower rate of false
positives.  Suppose a patient receives a positive mammography+. 
What is the chance that this patient has breast cancer?  Under the
new test, it is a virtual certainty - 99.988%, i.e., a 1 in 8082 chance of
being healthy.

Calculator: 

 Result: 

 Compute!

Remember, at this point, that neither mammography nor
mammography+ actually change the number of women who have
breast cancer.  It may seem like "There is a virtual certainty you have
breast cancer" is a terrible thing to say, causing much distress and
despair; that the more hopeful verdict of the previous mammography
test - a 7.8% chance of having breast cancer - was much to be
preferred.  This comes under the heading of "Don't shoot the
messenger".  The number of women who really do have cancer stays
exactly the same between the two cases.  Only the accuracy with
which we detect cancer changes.  Under the previous mammography
test, 80 women with cancer (who already had cancer, before the
mammography) are first told that they have a 7.8% chance of having
cancer, creating X amount of uncertainty and fear, after which more
detailed tests will inform them that they definitely do have breast
cancer.  The old mammography test also involves informing 950
women without breast cancer that they have a 7.8% chance of
having cancer, thus creating twelve times as much additional fear and
uncertainty.  The new test, mammography+, does not give 950
women false positives, and the 80 women with cancer are told the
same facts they would have learned eventually, only earlier and
without an intervening period of uncertainty.  Mammography+ is thus
a better test in terms of its total emotional impact on patients, as well
as being more accurate.  Regardless of its emotional impact, it
remains a fact that a patient with positive mammography+ has a
99.988% chance of having breast cancer.

Of course, that mammography+ does not give 950 healthy women
false positives means that all 80 of the patients with positive
mammography+ will be patients with breast cancer.  Thus, if you
have a positive mammography+, your chance of having cancer is a
virtual certainty.  It is because mammography+ does not generate as
many false positives (and needless emotional stress), that the (much
smaller) group of patients who do get positive results will be
composed almost entirely of genuine cancer patients (who have bad

80 / [80 + (9900 * 0.000001)]



composed almost entirely of genuine cancer patients (who have bad
news coming to them regardless of when it arrives).

Similarly, let's suppose that we have a less discriminating test,
mammography*, that still has a 20% rate of false negatives, as in the
original case.  However, mammography* has an 80% rate of false
positives.  In other words, a patient without breast cancer has an
80% chance of getting a false positive result on her mammography*
test.  If we suppose the same 1% prior probability that a patient
presenting herself for screening has breast cancer, what is the
chance that a patient with positive mammography* has cancer?

Group 1:  100 patients with breast cancer.
Group 2:  9,900 patients without breast cancer.

After mammography* screening:
Group A:  80 patients with breast cancer and a "positive"
mammography*.
Group B:  20 patients with breast cancer and a "negative"
mammography*.
Group C:  7920 patients without breast cancer and a "positive"
mammography*.
Group D:  1980 patients without breast cancer and a
"negative" mammography*.

Calculator: 

 Result: 

 Compute!

The result works out to 80 / 8,000, or 0.01.  This is exactly the same
as the 1% prior probability that a patient has breast cancer!  A
"positive" result on mammography* doesn't change the probability
that a woman has breast cancer at all.  You can similarly verify that a
"negative" mammography* also counts for nothing.  And in fact it
must be this way, because if mammography* has an 80% hit rate for
patients with breast cancer, and also an 80% rate of false positives
for patients without breast cancer, then mammography* is completely
uncorrelated with breast cancer.  There's no reason to call one result
"positive" and one result "negative"; in fact, there's no reason to call
the test a "mammography".  You can throw away your expensive
mammography* equipment and replace it with a random number
generator that outputs a red light 80% of the time and a green light
20% of the time; the results will be the same.  Furthermore, there's
no reason to call the red light a "positive" result or the green light a
"negative" result.  You could have a green light 80% of the time and
a red light 20% of the time, or a blue light 80% of the time and a
purple light 20% of the time, and it would all have the same bearing
on whether the patient has breast cancer: i.e., no bearing
whatsoever.

80 / (80 + 7920)



whatsoever.

We can show algebraically that this must hold for any case where the
chance of a true positive and the chance of a false positive are the
same, i.e:

Group 1:  100 patients with breast cancer.
Group 2:  9,900 patients without breast cancer.

Now consider a test where the probability of a true positive and the
probability of a false positive are the same number M (in the example
above, M=80% or M = 0.8):

Group A:  100*M patients with breast cancer and a "positive"
result.
Group B:  100*(1 - M) patients with breast cancer and a
"negative" result.
Group C:  9,900*M patients without breast cancer and a
"positive" result.
Group D:  9,900*(1 - M) patients without breast cancer and a
"negative" result.

The proportion of patients with breast cancer, within the group of
patients with a "positive" result, then equals 100*M / (100*M +
9900*M) = 100 / (100 + 9900) = 1%.  This holds true regardless of
whether M is 80%, 30%, 50%, or 100%.  If we have a
mammography* test that returns "positive" results for 90% of patients
with breast cancer and returns "positive" results for 90% of patients
without breast cancer, the proportion of "positive"-testing patients
who have breast cancer will still equal the original proportion of
patients with breast cancer, i.e., 1%.

You can run through the same algebra, replacing the prior proportion
of patients with breast cancer with an arbitrary percentage P:

Group 1:  Within some number of patients, a fraction P have
breast cancer.
Group 2:  Within some number of patients, a fraction (1 - P)
do not have breast cancer.

After a "cancer test" that returns "positive" for a fraction M of patients
with breast cancer, and also returns "positive" for the same fraction M
of patients without cancer:

Group A:  P*M patients have breast cancer and a "positive"
result.
Group B:  P*(1 - M) patients have breast cancer and a
"negative" result.
Group C:  (1 - P)*M patients have no breast cancer and a
"positive" result.
Group D:  (1 - P)*(1 - M) patients have no breast cancer and
a "negative" result.

The chance that a patient with a "positive" result has breast cancer is
then the proportion of group A within the combined group A + C, or



then the proportion of group A within the combined group A + C, or
P*M / [P*M + (1 - P)*M], which, cancelling the common factor M from
the numerator and denominator, is P / [P + (1 - P)] or P / 1 or just P. 
If the rate of false positives is the same as the rate of true positives,
you always have the same probability after the test as when you
started.

Which is common sense.  Take, for example, the "test" of flipping a
coin; if the coin comes up heads, does it tell you anything about
whether a patient has breast cancer?  No; the coin has a 50%
chance of coming up heads if the patient has breast cancer, and also
a 50% chance of coming up heads if the patient does not have
breast cancer.  Therefore there is no reason to call either heads or
tails a "positive" result.  It's not the probability being "50/50" that
makes the coin a bad test; it's that the two probabilities, for "cancer
patient turns up heads" and "healthy patient turns up heads", are the
same.  If the coin was slightly biased, so that it had a 60% chance of
coming up heads, it still wouldn't be a cancer test - what makes a
coin a poor test is not that it has a 50/50 chance of coming up heads
if the patient has cancer, but that it also has a 50/50 chance of
coming up heads if the patient does not have cancer.  You can even
use a test that comes up "positive" for cancer patients 100% of the
time, and still not learn anything.  An example of such a test is "Add
2 + 2 and see if the answer is 4."  This test returns positive 100% of
the time for patients with breast cancer.  It also returns positive 100%
of the time for patients without breast cancer.  So you learn nothing.

The original proportion of patients with breast cancer is known as the
prior probability.  The chance that a patient with breast cancer gets a
positive mammography, and the chance that a patient without breast
cancer gets a positive mammography, are known as the two
conditional probabilities.  Collectively, this initial information is known
as the priors.  The final answer - the estimated probability that a
patient has breast cancer, given that we know she has a positive
result on her mammography - is known as the revised probability or
the posterior probability.  What we've just shown is that if the two
conditional probabilities are equal, the posterior probability equals the
prior probability.

Fun
Fact!

Q.  How can I find the priors for a
problem?
A.  Many commonly used priors are listed in
the Handbook of Chemistry and Physics.

Q.  Where do priors originally come from?
A.  Never ask that question.



Q.  Uh huh.  Then where do scientists get
their priors?
A.  Priors for scientific problems are
established by annual vote of the AAAS.  In
recent years the vote has become fractious
and controversial, with widespread acrimony,
factional polarization, and several outright
assassinations.  This may be a front for
infighting within the Bayes Council, or it may
be that the disputants have too much spare
time.  No one is really sure.

Q.  I see.  And where does everyone else
get their priors?
A.  They download their priors from Kazaa.

Q.  What if the priors I want aren't available
on Kazaa?
A.  There's a small, cluttered antique shop in
a back alley of San Francisco's Chinatown. 
Don't ask about the bronze rat.

Actually, priors are true or false just like the final answer - they reflect
reality and can be judged by comparing them against reality.  For
example, if you think that 920 out of 10,000 women in a sample have
breast cancer, and the actual number is 100 out of 10,000, then your
priors are wrong.  For our particular problem, the priors might have
been established by three studies - a study on the case histories of
women with breast cancer to see how many of them tested positive
on a mammography, a study on women without breast cancer to see
how many of them test positive on a mammography, and an
epidemiological study on the prevalence of breast cancer in some
specific demographic.

Suppose that a barrel contains many small plastic eggs.  Some eggs
are painted red and some are painted blue.  40% of the eggs in the
bin contain pearls, and 60% contain nothing.   30% of eggs
containing pearls are painted blue, and 10% of eggs containing
nothing are painted blue.  What is the probability that a blue egg
contains a pearl?  For this example the arithmetic is simple enough
that you may be able to do it in your head, and I would suggest trying
to do so.

But just in case... 

 Result: 

 

(1 + 2) * 3 + 4



 Compute!

A more compact way of specifying the problem:
p(pearl) = 40%

p(blue|pearl) = 30%

p(blue|~pearl) = 10%

p(pearl|blue) = ?

"~" is shorthand for "not", so ~pearl reads "not pearl".

blue|pearl is shorthand for "blue given pearl" or "the probability
that an egg is painted blue, given that the egg contains a pearl". 
One thing that's confusing about this notation is that the order of
implication is read right-to-left, as in Hebrew or Arabic.  blue|pearl
means "blue<-pearl", the degree to which pearl-ness implies blue-
ness, not the degree to which blue-ness implies pearl-ness.  This is
confusing, but it's unfortunately the standard notation in probability
theory.

Readers familiar with quantum mechanics will have already
encountered this peculiarity; in quantum mechanics, for example,
<d|c><c|b><b|a> reads as "the probability that a particle at A
goes to B, then to C, ending up at D".  To follow the particle, you
move your eyes from right to left.  Reading from left to right, "|"
means "given"; reading from right to left, "|" means "implies" or
"leads to".  Thus, moving your eyes from left to right, blue|pearl
reads "blue given pearl" or "the probability that an egg is painted
blue, given that the egg contains a pearl".  Moving your eyes from
right to left, blue|pearl reads "pearl implies blue" or "the
probability that an egg containing a pearl is painted blue".

The item on the right side is what you already know or the premise,
and the item on the left side is the implication or conclusion.  If we
have p(blue|pearl) = 30%, and we already know that some egg
contains a pearl, then we can conclude there is a 30% chance that
the egg is painted blue.  Thus, the final fact we're looking for - "the
chance that a blue egg contains a pearl" or "the probability that an
egg contains a pearl, if we know the egg is painted blue" - reads
p(pearl|blue).

Let's return to the problem.  We have that 40% of the eggs contain
pearls, and 60% of the eggs contain nothing.  30% of the eggs
containing pearls are painted blue, so 12% of the eggs altogether
contain pearls and are painted blue.  10% of the eggs containing
nothing are painted blue, so altogether 6% of the eggs contain
nothing and are painted blue.  A total of 18% of the eggs are painted
blue, and a total of 12% of the eggs are painted blue and contain
pearls, so the chance a blue egg contains a pearl is 12/18 or 2/3 or
around 67%.



The applet below, courtesy of Christian Rovner, shows a graphic
representation of this problem:
(Are you having trouble seeing this applet?  Do you see an image of
the applet rather than the applet itself?  Try downloading an updated
Java.)

Looking at this applet, it's easier to see why the final answer depends
on all three probabilities; it's the differential pressure between the two
conditional probabilities,  p(blue|pearl) and p(blue|~pearl),
that slides the prior probability p(pearl) to the posterior probability
p(pearl|blue).

As before, we can see the necessity of all three pieces of information
by considering extreme cases (feel free to type them into the applet). 
In a (large) barrel in which only one egg out of a thousand contains a
pearl, knowing that an egg is painted blue slides the probability from
0.1% to 0.3% (instead of sliding the probability from 40% to 67%). 
Similarly, if 999 out of 1000 eggs contain pearls, knowing that an egg
is blue slides the probability from 99.9% to 99.966%; the probability
that the egg does not contain a pearl goes from 1/1000 to around
1/3000.  Even when the prior probability changes, the differential
pressure of the two conditional probabilities always slides the
probability in the same direction.  If you learn the egg is painted blue,
the probability the egg contains a pearl always goes up - but it goes
up from the prior probability, so you need to know the prior probability
in order to calculate the final answer.  0.1% goes up to 0.3%, 10%
goes up to 25%, 40% goes up to 67%, 80% goes up to 92%, and
99.9% goes up to 99.966%.  If you're interested in knowing how any
other probabilities slide, you can type your own prior probability into
the Java applet.  You can also click and drag the dividing line
between pearl and ~pearl in the upper bar, and watch the
posterior probability change in the bottom bar.

http://www.java.com/en/index.jsp


posterior probability change in the bottom bar.

Studies of clinical reasoning show that most doctors carry out the
mental operation of replacing the original 1% probability with the 80%
probability that a woman with cancer would get a positive
mammography.  Similarly, on the pearl-egg problem, most
respondents unfamiliar with Bayesian reasoning would probably
respond that the probability a blue egg contains a pearl is 30%, or
perhaps 20% (the 30% chance of a true positive minus the 10%
chance of a false positive).  Even if this mental operation seems like
a good idea at the time, it makes no sense in terms of the question
asked.  It's like the experiment in which you ask a second-grader:  "If
eighteen people get on a bus, and then seven more people get on
the bus, how old is the bus driver?"  Many second-graders will
respond:  "Twenty-five."  They understand when they're being
prompted to carry out a particular mental procedure, but they haven't
quite connected the procedure to reality.  Similarly, to find the
probability that a woman with a positive mammography has breast
cancer, it makes no sense whatsoever to replace the original
probability that the woman has cancer with the probability that a
woman with breast cancer gets a positive mammography.  Neither
can you subtract the probability of a false positive from the probability
of the true positive.  These operations are as wildly irrelevant as
adding the number of people on the bus to find the age of the bus
driver.

I keep emphasizing the idea that evidence slides probability because
of research that shows people tend to use spatial intutions to grasp
numbers.  In particular, there's interesting evidence that we have an
innate sense of quantity that's localized to left inferior parietal cortex -
patients with damage to this area can selectively lose their sense of
whether 5 is less than 8, while retaining their ability to read, write,
and so on.  (Yes, really!)  The parietal cortex processes our sense of
where things are in space (roughly speaking), so an innate "number
line", or rather "quantity line", may be responsible for the human
sense of numbers.  This is why I suggest visualizing Bayesian
evidence as sliding the probability along the number line; my hope is
that this will translate Bayesian reasoning into something that makes
sense to innate human brainware.  (That, really, is what an "intuitive
explanation" is.)  For more information, see Stanislas Dehaene's The
Number Sense.

A study by Gigerenzer and Hoffrage in 1995 showed that some ways
of phrasing story problems are much more evocative of correct
Bayesian reasoning.  The least evocative phrasing used probabilities. 
A slightly more evocative phrasing used frequencies instead of



A slightly more evocative phrasing used frequencies instead of
probabilities; the problem remained the same, but instead of saying
that 1% of women had breast cancer, one would say that 1 out of
100 women had breast cancer, that 80 out of 100 women with breast
cancer would get a positive mammography, and so on.  Why did a
higher proportion of subjects display Bayesian reasoning on this
problem?  Probably because saying "1 out of 100 women"
encourages you to concretely visualize X women with cancer, leading
you to visualize X women with cancer and a positive mammography,
etc.

The most effective presentation found so far is what's known as
natural frequencies - saying that 40 out of 100 eggs contain pearls,
12 out of 40 eggs containing pearls are painted blue, and 6 out of 60
eggs containing nothing are painted blue.  A natural frequencies
presentation is one in which the information about the prior
probability is included in presenting the conditional probabilities.  If
you were just learning about the eggs' conditional probabilities
through natural experimentation, you would - in the course of
cracking open a hundred eggs - crack open around 40 eggs
containing pearls, of which 12 eggs would be painted blue, while
cracking open 60 eggs containing nothing, of which about 6 would be
painted blue.  In the course of learning the conditional probabilities,
you'd see examples of blue eggs containing pearls about twice as
often as you saw examples of blue eggs containing nothing.

It may seem like presenting the problem in this way is "cheating", and
indeed if it were a story problem in a math book, it probably would be
cheating.  However, if you're talking about real doctors, you want to
cheat; you want the doctors to draw the right conclusions as easily as
possible.  The obvious next move would be to present all medical
statistics in terms of natural frequencies.  Unfortunately, while natural
frequencies are a step in the right direction, it probably won't be
enough.  When problems are presented in natural frequences, the
proportion of people using Bayesian reasoning rises to around half. 
A big improvement, but not big enough when you're talking about
real doctors and real patients.

A presentation of the problem in natural frequencies might be
visualized like this:
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66.7%p(pearl|blue) :
Posterior probability:

10.0%p(blue|~pearl) :
30.0%p(blue|pearl) :

Conditional probabilities:
40.0%p(pearl) :

Prior probability:

In the frequency visualization, the selective attrition of the two
conditional probabilities changes the proportion of eggs that contain
pearls.  The bottom bar is shorter than the top bar, just as the
number of eggs painted blue is less than the total number of eggs. 
The probability graph shown earlier is really just the frequency graph
with the bottom bar "renormalized", stretched out to the same length
as the top bar.  In the frequency applet you can change the
conditional probabilities by clicking and dragging the left and right
edges of the graph.  (For example, to change the conditional
probability blue|pearl, click and drag the line on the left that
stretches from the left edge of the top bar to the left edge of the
bottom bar.)

In the probability applet, you can see that when the conditional
probabilities are equal, there's no differential pressure - the arrows
are the same size - so the prior probability doesn't slide between the
top bar and the bottom bar.  But the bottom bar in the probability
applet is just a renormalized (stretched out) version of the bottom bar
in the frequency applet, and the frequency applet shows why the
probability doesn't slide if the two conditional probabilities are equal. 
Here's a case where the prior proportion of pearls remains 40%, and
the proportion of pearl eggs painted blue remains 30%, but the
number of empty eggs painted blue is also 30%:



420Red empty eggs:
180Blue empty eggs:
280Red pearl eggs:
120Blue pearl eggs:

 
600Empty eggs:
400Pearl eggs:
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Conditional probabilities:
40.0%p(pearl) :

Prior probability:

If you diminish two shapes by the same factor, their relative
proportion will be the same as before.  If you diminish the left section
of the top bar by the same factor as the right section, then the
bottom bar will have the same proportions as the top bar - it'll just be
smaller.  If the two conditional probabilities are equal, learning that
the egg is blue doesn't change the probability that the egg contains a
pearl - for the same reason that similar triangles have identical
angles; geometric figures don't change shape when you shrink them
by a constant factor.

In this case, you might as well just say that 30% of eggs are painted
blue, since the probability of an egg being painted blue is
independent of whether the egg contains a pearl.  Applying a "test"
that is statistically independent of its condition just shrinks the sample
size.  In this case, requiring that the egg be painted blue doesn't
shrink the group of eggs with pearls any more or less than it shrinks
the group of eggs without pearls.  It just shrinks the total number of
eggs in the sample.

Fun
Fact!

Q.  Why did the Bayesian reasoner cross the road?
A.  You need more information to answer this question.

Here's what the original medical problem looks like when graphed. 
1% of women have breast cancer, 80% of those women test positive
on a mammography, and 9.6% of women without breast cancer also
receive positive mammographies.



As is now clearly visible, the mammography doesn't increase the
probability a positive-testing woman has breast cancer by increasing
the number of women with breast cancer - of course not; if
mammography increased the number of women with breast cancer,
no one would ever take the test!  However, requiring a positive
mammography is a membership test that eliminates many more
women without breast cancer than women with cancer.  The number
of women without breast cancer diminishes by a factor of more than
ten, from 9,900 to 950, while the number of women with breast
cancer is diminished only from 100 to 80.  Thus, the proportion of 80
within 1,030 is much larger than the proportion of 100 within 10,000. 
In the graph, the left sector (representing women with breast cancer)
is small, but the mammography test projects almost all of this sector
into the bottom bar.  The right sector (representing women without
breast cancer) is large, but the mammography test projects a much
smaller fraction of this sector into the bottom bar.  There are, indeed,
fewer women with breast cancer and positive mammographies than
there are women with breast cancer - obeying the law of probabilities
which requires that p(A) >= p(A&B).  But even though the left
sector in the bottom bar is actually slightly smaller, the proportion of
the left sector within the bottom bar is greater - though still not very
great.  If the bottom bar were renormalized to the same length as the
top bar, it would look like the left sector had expanded.  This is why
the proportion of "women with breast cancer" in the group "women
with positive mammographies" is higher than the proportion of
"women with breast cancer" in the general population - although the
proportion is still not very high.  The evidence of the positive
mammography slides the prior probability of 1% to the posterior
probability of 7.8%.

Suppose there's yet another variant of the mammography test,



Suppose there's yet another variant of the mammography test,
mammography@, which behaves as follows.  1% of women in a
certain demographic have breast cancer.  Like ordinary
mammography, mammography@ returns positive 9.6% of the time for
women without breast cancer.  However, mammography@ returns
positive 0% of the time (say, once in a billion) for women with breast
cancer.  The graph for this scenario looks like this:

What is it that this test actually does?  If a patient comes to you with
a positive result on her mammography@, what do you say?

"Congratulations, you're among the rare 9.5% of the population
whose health is definitely established by this test."

Mammography@ isn't a cancer test; it's a health test!  Few women
without breast cancer get positive results on mammography@, but
only women without breast cancer ever get positive results at all. 
Not much of the right sector of the top bar projects into the bottom
bar, but none of the left sector projects into the bottom bar.  So a
positive result on mammography@ means you definitely don't have
breast cancer.

What makes ordinary mammography a positive indicator for breast
cancer is not that someone named the result "positive", but rather
that the test result stands in a specific Bayesian relation to the
condition of breast cancer.  You could call the same result "positive"
or "negative" or "blue" or "red" or "James Rutherford", or give it no
name at all, and the test result would still slide the probability in
exactly the same way.  To minimize confusion, a test result which



exactly the same way.  To minimize confusion, a test result which
slides the probability of breast cancer upward should be called
"positive".  A test result which slides the probability of breast cancer
downward should be called "negative".  If the test result is statistically
unrelated to the presence or absence of breast cancer - if the two
conditional probabilities are equal - then we shouldn't call the
procedure a "cancer test"!  The meaning of the test is determined by
the two conditional probabilities; any names attached to the results
are simply convenient labels.

The bottom bar for the graph of mammography@ is small;
mammography@ is a test that's only rarely useful.  Or rather, the test
only rarely gives strong evidence, and most of the time gives weak
evidence.  A negative result on mammography@ does slide
probability - it just doesn't slide it very far.  Click the "Result" switch
at the bottom left corner of the applet to see what a negative result
on mammography@ would imply.  You might intuit that since the test
could have returned positive for health, but didn't, then the failure of
the test to return positive must mean that the woman has a higher
chance of having breast cancer - that her probability of having breast
cancer must be slid upward by the negative result on her health test.

This intuition is correct!  The sum of the groups with negative results
and positive results must always equal the group of all women.  If the
positive-testing group has "more than its fair share" of women without
breast cancer, there must be an at least slightly higher proportion of
women with cancer in the negative-testing group.  A positive result is
rare but very strong evidence in one direction, while a negative result
is common but very weak evidence in the opposite direction.  You
might call this the Law of Conservation of Probability - not a standard
term, but the conservation rule is exact.  If you take the revised



term, but the conservation rule is exact.  If you take the revised
probability of breast cancer after a positive result, times the
probability of a positive result, and add that to the revised probability
of breast cancer after a negative result, times the probability of a
negative result, then you must always arrive at the prior probability. 
If you don't yet know what the test result is, the expected revised
probability after the test result arrives - taking both possible results
into account - should always equal the prior probability.

On ordinary mammography, the test is expected to return "positive"
10.3% of the time - 80 positive women with cancer plus 950 positive
women without cancer equals 1030 women with positive results. 
Conversely, the mammography should return negative 89.7% of the
time:  100% - 10.3% = 89.7%.  A positive result slides the revised
probability from 1% to 7.8%, while a negative result slides the revised
probability from 1% to 0.22%.  So
p(cancer|positive)*p(positive) +
p(cancer|negative)*p(negative) = 7.8%*10.3% +

0.22%*89.7% = 1% = p(cancer), as expected.

Calculator: 

 Result: 

 Compute!

Why "as expected"?  Let's take a look at the quantities involved:

p(cancer): 0.01   Group 1: 100 women with
breast cancer

p(~cancer): 0.99
Group 2: 9900 women
without breast cancer

 

p(positive|cancer): 80.0% 80% of women with breast
cancer have positive
mammographies

p(~positive|cancer): 20.0% 20% of women with breast
cancer have negative
mammographies

p(positive|~cancer): 9.6% 9.6% of women without
breast cancer have positive
mammographies

p(~positive|~cancer): 90.4% 90.4% of women without
breast cancer have negative
mammographies

 

p(cancer&positive): 0.008 Group A:  80 women with
breast cancer and positive

7.8%*10.3% + 0.22%*89.7%



breast cancer and positive
mammographies

p(cancer&~positive): 0.002 Group B: 20 women with
breast cancer and negative
mammographies

p(~cancer&positive): 0.095 Group C: 950 women
without breast cancer and
positive mammographies

p(~cancer&~positive): 0.895 Group D: 8950 women
without breast cancer and
negative mammographies

 

p(positive): 0.103 1030 women with positive
results

p(~positive): 0.897 8970 women with negative
results

 

p(cancer|positive): 7.80% Chance you have breast
cancer if mammography is
positive: 7.8%

p(~cancer|positive): 92.20% Chance you are healthy if
mammography is positive:
92.2%

p(cancer|~positive): 0.22% Chance you have breast
cancer if mammography is
negative: 0.22%

p(~cancer|~positive): 99.78% Chance you are healthy if
mammography is negative:
99.78%

One of the common confusions in using Bayesian reasoning is to mix
up some or all of these quantities - which, as you can see, are all
numerically different and have different meanings.  p(A&B) is the
same as p(B&A), but p(A|B) is not the same thing as p(B|A), and
p(A&B) is completely different from p(A|B).  (I don't know who
chose the symmetrical "|" symbol to mean "implies", and then made
the direction of implication right-to-left, but it was probably a bad
idea.)

To get acquainted with all these quantities and the relationships
between them, we'll play "follow the degrees of freedom".  For
example, the two quantities p(cancer) and p(~cancer) have 1
degree of freedom between them, because of the general law p(A)
+ p(~A) = 1.  If you know that p(~cancer) = .99, you can
obtain p(cancer) = 1 - p(~cancer) = .01.  There's no room
to say that p(~cancer) = .99 and then also specify p(cancer)
= .25; it would violate the rule p(A) + p(~A) = 1.



p(positive|cancer) and p(~positive|cancer) also have
only one degree of freedom between them; either a woman with
breast cancer gets a positive mammography or she doesn't.  On the
other hand, p(positive|cancer) and p(positive|~cancer)
have two degrees of freedom.  You can have a mammography test
that returns positive for 80% of cancerous patients and 9.6% of
healthy patients, or that returns positive for 70% of cancerous
patients and 2% of healthy patients, or even a health test that returns
"positive" for 30% of cancerous patients and 92% of healthy patients. 
The two quantities, the output of the mammography test for
cancerous patients and the output of the mammography test for
healthy patients, are in mathematical terms independent; one cannot
be obtained from the other in any way, and so they have two degrees
of freedom between them.

What about p(positive&cancer), p(positive|cancer), and
p(cancer)?  Here we have three quantities; how many degrees of
freedom are there?  In this case the equation that must hold is
p(positive&cancer) = p(positive|cancer) *

p(cancer).  This equality reduces the degrees of freedom by one. 
If we know the fraction of patients with cancer, and chance that a
cancerous patient has a positive mammography, we can deduce the
fraction of patients who have breast cancer and a positive
mammography by multiplying.  You should recognize this operation
from the graph; it's the projection of the top bar into the bottom bar. 
p(cancer) is the left sector of the top bar, and
p(positive|cancer) determines how much of that sector projects
into the bottom bar, and the left sector of the bottom bar is
p(positive&cancer).

762506Healthy & negative:
80974Healthy & positive:
1704Cancer & negative:
6816Cancer & positive:

 
843480Healthy:
8520Cancer:

 
852000Total patients:
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Conditional probabilities:
1.0%p(cancer) :

Prior probability:

Similarly, if we know the number of patients with breast cancer and
positive mammographies, and also the number of patients with breast



positive mammographies, and also the number of patients with breast
cancer, we can estimate the chance that a woman with breast cancer
gets a positive mammography by dividing: p(positive|cancer)
= p(positive&cancer) / p(cancer).  In fact, this is exactly
how such medical diagnostic tests are calibrated; you do a study on
8,520 women with breast cancer and see that there are 6,816 (or
thereabouts) women with breast cancer andpositive mammographies,
then divide 6,816 by 8520 to find that 80% of women with breast
cancer had positive mammographies.  (Incidentally, if you accidentally
divide 8520 by 6,816 instead of the other way around, your
calculations will start doing strange things, such as insisting that
125% of women with breast cancer and positive mammographies
have breast cancer.  This is a common mistake in carrying out
Bayesian arithmetic, in my experience.)  And finally, if you know
p(positive&cancer) and p(positive|cancer), you can
deduce how many cancer patients there must have been originally. 
There are two degrees of freedom shared out among the three
quantities; if we know any two, we can deduce the third.

How about p(positive), p(positive&cancer), and
p(positive&~cancer)?  Again there are only two degrees of
freedom among these three variables.  The equation occupying the
extra degree of freedom is p(positive) =
p(positive&cancer) + p(positive&~cancer).  This is how
p(positive) is computed to begin with; we figure out the number
of women with breast cancer who have positive mammographies,
and the number of women without breast cancer who have positive
mammographies, then add them together to get the total number of
women with positive mammographies.  It would be very strange to go
out and conduct a study to determine the number of women with
positive mammographies - just that one number and nothing else -
but in theory you could do so.  And if you then conducted another
study and found the number of those women who had positive
mammographies and breast cancer, you would also know the number
of women with positive mammographies and no breast cancer -
either a woman with a positive mammography has breast cancer or
she doesn't.  In general, p(A&B) + p(A&~B) = p(A). 
Symmetrically, p(A&B) + p(~A&B) = p(B).
 
What about p(positive&cancer), p(positive&~cancer),
p(~positive&cancer), and p(~positive&~cancer)?  You
might at first be tempted to think that there are only two degrees of
freedom for these four quantities - that you can, for example, get
p(positive&~cancer) by multiplying p(positive) *
p(~cancer), and thus that all four quantities can be found given
only the two quantities p(positive) and p(cancer).  This is not
the case!  p(positive&~cancer) = p(positive) *
p(~cancer) only if the two probabilities are statistically independent
- if the chance that a woman has breast cancer has no bearing on



- if the chance that a woman has breast cancer has no bearing on
whether she has a positive mammography.  As you'll recall, this
amounts to requiring that the two conditional probabilities be equal to
each other - a requirement which would eliminate one degree of
freedom.  If you remember that these four quantities are the groups
A, B, C, and D, you can look over those four groups and realize that,
in theory, you can put any number of people into the four groups.  If
you start with a group of 80 women with breast cancer and positive
mammographies, there's no reason why you can't add another group
of 500 women with breast cancer and negative mammographies,
followed by a group of 3 women without breast cancer and negative
mammographies, and so on.  So now it seems like the four quantities
have four degrees of freedom.  And they would, except that in
expressing them as probabilities, we need to normalize them to
fractions of the complete group, which adds the constraint that
p(positive&cancer) + p(positive&~cancer) +

p(~positive&cancer) + p(~positive&~cancer) = 1.  This
equation takes up one degree of freedom, leaving three degrees of
freedom among the four quantities.  If you specify the fractions of
women in groups A, B, and D, you can deduce the fraction of women
in group C.

Given the four groups A, B, C, and D, it is very straightforward to
compute everything else:  p(cancer) = A + B,
p(~positive|cancer) = B / (A + B), and so on.  Since
ABCD contains three degrees of freedom, it follows that the entire set
of 16 probabilities contains only three degrees of freedom. 
Remember that in our problems we always needed three pieces of
information - the prior probability and the two conditional probabilities
- which, indeed, have three degrees of freedom among them. 
Actually, for Bayesian problems, any three quantities with three
degrees of freedom between them should logically specify the entire
problem.  For example, let's take a barrel of eggs with p(blue) =
0.40,  p(blue|pearl) = 5/13, and p(~blue&~pearl) =
0.20.  Given this information, you can compute p(pearl|blue). 

As a story problem:
Suppose you have a large barrel containing a number of plastic
eggs.  Some eggs contain pearls, the rest contain nothing.  Some
eggs are painted blue, the rest are painted red.  Suppose that 40% of
the eggs are painted blue, 5/13 of the eggs containing pearls are
painted blue, and 20% of the eggs are both empty and painted red. 
What is the probability that an egg painted blue contains a pearl?

Try it - I assure you it is possible.

Calculator: 

 Result: 



 Result: 

 Good luck!

You probably shouldn't try to solve this with just a Javascript
calculator, though.  I used a Python console.  (In theory, pencil and
paper should also work, but I don't know anyone who owns a pencil
so I couldn't try it personally.)

As a check on your calculations, does the (meaningless) quantity
p(~pearl|~blue)/p(pearl) roughly equal .51?  (In story
problem terms:  The likelihood that a red egg is empty, divided by the
likelihood that an egg contains a pearl, equals approximately .51.)  Of
course, using this information in the problem would be cheating.

If you can solve that problem, then when we revisit Conservation of
Probability, it seems perfectly straightforward.  Of course the mean
revised probability, after administering the test, must be the same as
the prior probability.  Of course strong but rare evidence in one
direction must be counterbalanced by common but weak evidence in
the other direction.

Because:

  p(cancer|positive)*p(positive)

+ p(cancer|~positive)*p(~positive)

= p(cancer)

In terms of the four groups:

p(cancer|positive)  = A / (A + C)

p(positive)         = A + C

p(cancer&positive)  = A

p(cancer|~positive) = B / (B + D)

p(~positive)        = B + D

p(cancer&~positive) = B

p(cancer)           = A + B

Let's return to the original barrel of eggs - 40% of the eggs
containing pearls, 30% of the pearl eggs painted blue, 10% of the
empty eggs painted blue.  The graph for this problem is:

0
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What happens to the revised probability, p(pearl|blue), if the
proportion of eggs containing pearls is kept constant, but 60% of the
eggs with pearls are painted blue (instead of 30%), and 20% of the
empty eggs are painted blue (instead of 10%)?  You could type 60%
and 20% into the inputs for the two conditional probabilities, and see
how the graph changes - but can you figure out in advance what the
change will look like?

If you guessed that the revised probability remains the same,
because the bottom bar grows by a factor of 2 but retains the same
proportions, congratulations!  Take a moment to think about how far
you've come.  Looking at a problem like

1% of women have breast cancer.  80% of women with breast
cancer get positive mammographies.  9.6% of women without
breast cancer get positive mammographies.  If a woman has a
positive mammography, what is the probability she has breast
cancer?

the vast majority of respondents intuit that around 70-80% of women
with positive mammographies have breast cancer.  Now, looking at a
problem like

Suppose there are two barrels containing many small plastic
eggs.  In both barrels, some eggs are painted blue and the
rest are painted red.  In both barrels, 40% of the eggs contain
pearls and the rest are empty.  In the first barrel, 30% of the
pearl eggs are painted blue, and 10% of the empty eggs are
painted blue.  In the second barrel, 60% of the pearl eggs are
painted blue, and 20% of the empty eggs are painted blue. 
Would you rather have a blue egg from the first or second



Would you rather have a blue egg from the first or second
barrel?

you can see it's intuitively obvious that the probability of a blue egg
containing a pearl is the same for either barrel.  Imagine how hard it
would be to see that using the old way of thinking!

It's intuitively obvious, but how to prove it?  Suppose that we call P
the prior probability that an egg contains a pearl, that we call M the
first conditional probability (that a pearl egg is painted blue), and N
the second conditional probability (that an empty egg is painted
blue).  Suppose that M and N are both increased or diminished by an
arbitrary factor X - for example, in the problem above, they are both
increased by a factor of 2.  Does the revised probability that an egg
contains a pearl, given that we know the egg is blue, stay the same?

p(pearl) = P

p(blue|pearl) = M*X

p(blue|~pearl) = N*X

p(pearl|blue) = ?

From these quantities, we get the four groups:
Group A:  p(pearl&blue)   = P*M*X
Group B:  p(pearl&~blue)  = P*(1 - (M*X))
Group C:  p(~pearl&blue)  = (1 - P)*N*X
Group D:  p(~pearl&~blue) = (1 - P)*(1 - (N*X))

The proportion of eggs that contain pearls and are blue, within the
group of all blue eggs, is then the proportion of group (A) within the
group (A + C), equalling P*M*X / (P*M*X + (1 - P)*N*X). 
The factor X in the numerator and denominator cancels out, so
increasing or diminishing both conditional probabilities by a constant
factor doesn't change the revised probability.

Fun
Fact!

Q.  Suppose that there are two barrels,
each containing a number of plastic eggs. 
In both barrels, some eggs are painted
blue and the rest are painted red.  In the
first barrel, 90% of the eggs contain pearls
and 20% of the pearl eggs are painted
blue.  In the second barrel, 45% of the
eggs contain pearls and 60% of the empty
eggs are painted red.  Would you rather
have a blue pearl egg from the first or
second barrel?
A.  Actually, it doesn't matter which barrel you
choose!  Can you see why?



choose!  Can you see why?

The probability that a test gives a true positive divided by the
probability that a test gives a false positive is known as the likelihood
ratio of that test.  Does the likelihood ratio of a medical test sum up
everything there is to know about the usefulness of the test?

No, it does not!  The likelihood ratio sums up everything there is to
know about the meaning of a positive result on the medical test, but
the meaning of a negative result on the test is not specified, nor is
the frequency with which the test is useful.  If we examine the
algebra above, while p(pearl|blue) remains constant,
p(pearl|~blue) may change - the X does not cancel out.  As a
story problem, this strange fact would look something like this:

Suppose that there are two barrels, each containing a number
of plastic eggs.  In both barrels, 40% of the eggs contain
pearls and the rest contain nothing.  In both barrels, some
eggs are painted blue and the rest are painted red.  In the first
barrel, 30% of the eggs with pearls are painted blue, and 10%
of the empty eggs are painted blue.  In the second barrel, 90%
of the eggs with pearls are painted blue, and 30% of the
empty eggs are painted blue.  Would you rather have a blue
egg from the first or second barrel?  Would you rather have a
red egg from the first or second barrel?

For the first question, the answer is that we don't care whether we
get the blue egg from the first or second barrel.  For the second
question, however, the probabilities do change - in the first barrel,
34% of the red eggs contain pearls, while in the second barrel 8.7%
of the red eggs contain pearls!  Thus, we should prefer to get a red
egg from the first barrel.  In the first barrel, 70% of the pearl eggs are
painted red, and 90% of the empty eggs are painted red.  In the
second barrel, 10% of the pearl eggs are painted red, and 70% of the
empty eggs are painted red.

Calculator: 

 Result: 

 Compute!

What goes on here?  We start out by noting that, counter to intuition,
p(pearl|blue) and p(pearl|~blue) have two degrees of
freedom among them even when p(pearl) is fixed - so there's no
reason why one quantity shouldn't change while the other remains
constant.  But we didn't we just get through establishing a law for
"Conservation of Probability", which says that
p(pearl|blue)*p(blue) + p(pearl|~blue)*p(~blue) =

70%*40% / (70%*40% + 90%*60%)



p(pearl|blue)*p(blue) + p(pearl|~blue)*p(~blue) =

p(pearl)?  Doesn't this equation take up one degree of freedom? 
No, because p(blue) isn't fixed between the two problems.  In the
second barrel, the proportion of blue eggs containing pearls is the
same as in the first barrel, but a much larger fraction of eggs are
painted blue!  This alters the set of red eggs in such a way that the
proportions do change.  Here's a graph for the red eggs in the
second barrel:
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40Red pearl eggs:
360Blue pearl eggs:

 
600Empty eggs:
400Pearl eggs:

 
1000Total eggs:

Reset

: redResult

: frequencyVisualization
 

8.7%p(pearl|red) :
Posterior probability:

70.0%p(red|~pearl) :
10.0%p(red|pearl) :

Conditional probabilities:
40.0%p(pearl) :

Prior probability:

Let's return to the example of a medical test.  The likelihood ratio of a
medical test - the number of true positives divided by the number of
false positives - tells us everything there is to know about the
meaning of a positive result.  But it doesn't tell us the meaning of a
negative result, and it doesn't tell us how often the test is useful.  For
example, a mammography with a hit rate of 80% for patients with
breast cancer and a false positive rate of 9.6% for healthy patients
has the same likelihood ratio as a test with an 8% hit rate and a false
positive rate of 0.96%.  Although these two tests have the same
likelihood ratio, the first test is more useful in every way - it detects
disease more often, and a negative result is stronger evidence of
health.

The likelihood ratio for a positive result summarizes the differential
pressure of the two conditional probabilities for a positive result, and
thus summarizes how much a positive result will slide the prior
probability.  Take a probability graph, like this one:



The likelihood ratio of the mammography is what determines the
slant of the line.  If the prior probability is 1%, then knowing only the
likelihood ratio is enough to determine the posterior probability after a
positive result.

But, as you can see from the frequency graph, the likelihood ratio
doesn't tell the whole story - in the frequency graph, the proportions
of the bottom bar can stay fixed while the size of the bottom bar
changes.  p(blue) increases but p(pearl|blue) doesn't change,
because p(pearl&blue) and p(~pearl&blue) increase by the
same factor.  But when you flip the graph to look at p(~blue), the
proportions of p(pearl&~blue) and p(~pearl&~blue) do not
remain constant.

Of course the likelihood ratio can't tell the whole story; the likelihood
ratio and the prior probability together are only two numbers, while
the problem has three degrees of freedom.

Suppose that you apply two tests for breast cancer in succession -
say, a standard mammography and also some other test which is
independent of mammography.  Since I don't know of any such test
which is independent of mammography, I'll invent one for the purpose
of this problem, and call it the Tams-Braylor Division Test, which
checks to see if any cells are dividing more rapidly than other cells. 
We'll suppose that the Tams-Braylor gives a true positive for 90% of
patients with breast cancer, and gives a false positive for 5% of
patients without cancer.  Let's say the prior prevalence of breast
cancer is 1%.  If a patient gets a positive result on her
mammography and her Tams-Braylor, what is the revised probability
she has breast cancer?



One way to solve this problem would be to take the revised
probability for a positive mammography, which we already calculated
as 7.8%, and plug that into the Tams-Braylor test as the new prior
probability.  If we do this, we find that the result comes out to 60%.

Calculator: 

 Result: 

 Compute!

But this assumes that first we see the positive mammography result,
and then the positive result on the Tams-Braylor.  What if first the
woman gets a positive result on the Tams-Braylor, followed by a
positive result on her mammography.  Intuitively, it seems like it
shouldn't matter.  Does the math check out?

First we'll administer the Tams-Braylor to a woman with a 1% prior
probability of breast cancer.  

Calculator: 

 Result: 

 Compute!

Then we administer a mammography, which gives 80% true positives
and 9.6% false positives, and it also comes out positive.

Calculator: 

 Result: 

 Compute!

Lo and behold, the answer is again 60%.  (If it's not exactly the
same, it's due to rounding error - you can get a more precise
calculator, or work out the fractions by hand, and the numbers will be
exactly equal.)

An algebraic proof that both strategies are equivalent is left to the
reader.  To visualize, imagine that the lower bar of the frequency
applet for mammography projects an even lower bar using the
probabilities of the Tams-Braylor Test, and that the final lowest bar is
the same regardless of the order in which the conditional probabilities
are projected.

We might also reason that since the two tests are independent, the
probability a woman with breast cancer gets a positive
mammography and a positive Tams-Braylor is 90% * 80% = 72%. 
And the probability that a woman without breast cancer gets false
positives on mammography and Tams-Braylor is 5% * 9.6% =
0.48%.  So if we wrap it all up as a single test with a likelihood ratio

(1 + 2) * 3 + 4

(1 + 2) * 3 + 4

(1 + 2) * 3 + 4



0.48%.  So if we wrap it all up as a single test with a likelihood ratio
of 72%/0.48%, and apply it to a woman with a 1% prior probability of
breast cancer:

Calculator: 

 Result: 

 Compute!

...we find once again that the answer is 60%.

Suppose that the prior prevalence of breast cancer in a demographic
is 1%.  Suppose that we, as doctors, have a repertoire of three
independent tests for breast cancer.  Our first test, test A, a
mammography, has a likelihood ratio of 80%/9.6% = 8.33.  The
second test, test B, has a likelihood ratio of 18.0 (for example, from
90% versus 5%); and the third test, test C, has a likelihood ratio of
3.5 (which could be from 70% versus 20%, or from 35% versus 10%;
it makes no difference).  Suppose a patient gets a positive result on
all three tests.  What is the probability the patient has breast cancer?

Here's a fun trick for simplifying the bookkeeping.  If the prior
prevalence of breast cancer in a demographic is 1%, then 1 out of
100 women have breast cancer, and 99 out of 100 women do not
have breast cancer.  So if we rewrite the probability of 1% as an
odds ratio, the odds are:

1:99

And the likelihood ratios of the three tests A, B, and C are:

8.33:1 = 25:3

18.0:1 = 18:1

 3.5:1 =  7:2

The odds for women with breast cancer who score positive on all
three tests, versus women without breast cancer who score positive
on all three tests, will equal:

1*25*18*7:99*3*1*2 =

3,150:594

To recover the probability from the odds, we just write:
3,150 / (3,150 + 594) = 84%

This always works regardless of how the odds ratios are written; i.e.,
8.33:1 is just the same as 25:3 or 75:9.  It doesn't matter in what
order the tests are administered, or in what order the results are
computed.  The proof is left as an exercise for the reader.

(1 + 2) * 3 + 4



E. T. Jaynes, in "Probability Theory With Applications in Science and
Engineering", suggests that credibility and evidence should be
measured in decibels.

Decibels?

Decibels are used for measuring exponential differences of intensity. 
For example, if the sound from an automobile horn carries 10,000
times as much energy (per square meter per second) as the sound
from an alarm clock, the automobile horn would be 40 decibels
louder.  The sound of a bird singing might carry 1,000 times less
energy than an alarm clock, and hence would be 30 decibels softer. 
To get the number of decibels, you take the logarithm base 10 and
multiply by 10.

decibels = 10 log10 (intensity)

    or

intensity = 10(decibels/10)

Suppose we start with a prior probability of 1% that a woman has
breast cancer, corresponding to an odds ratio of 1:99.  And then we
administer three tests of likelihood ratios 25:3, 18:1, and 7:2.  You
could multiply those numbers... or you could just add their logarithms:

10 log10 (1/99) = -20

10 log10 (25/3) = 9

10 log10 (18/1) = 13

10 log10 (7/2)  = 5

It starts out as fairly unlikely that a woman has breast cancer - our
credibility level is at -20 decibels.  Then three test results come in,
corresponding to 9, 13, and 5 decibels of evidence.  This raises the
credibility level by a total of 27 decibels, meaning that the prior
credibility of -20 decibels goes to a posterior credibility of 7 decibels. 
So the odds go from 1:99 to 5:1, and the probability goes from 1% to
around 83%.

In front of you is a bookbag containing 1,000 poker chips.  I
started out with two such bookbags, one containing 700 red
and 300 blue chips, the other containing 300 red and 700
blue.  I flipped a fair coin to determine which bookbag to use,
so your prior probability that the bookbag in front of you is the
red bookbag is 50%.  Now, you sample randomly, with
replacement after each chip.  In 12 samples, you get 8 reds



replacement after each chip.  In 12 samples, you get 8 reds
and 4 blues.  What is the probability that this is the
predominantly red bag?

Just for fun, try and work this one out in your head.  You don't need
to be exact - a rough estimate is good enough.  When you're ready,
continue onward.

According to a study performed by Lawrence Phillips and Ward
Edwards in 1966, most people, faced with this problem, give an
answer in the range 70% to 80%.  Did you give a substantially higher
probability than that?  If you did, congratulations - Ward Edwards
wrote that very seldom does a person answer this question properly,
even if the person is relatively familiar with Bayesian reasoning.  The
correct answer is 97%.

The likelihood ratio for the test result "red chip" is 7/3, while the
likelihood ratio for the test result "blue chip" is 3/7.  Therefore a blue
chip is exactly the same amount of evidence as a red chip, just in the
other direction - a red chip is 3.6 decibels of evidence for the red
bag, and a blue chip is -3.6 decibels of evidence.  If you draw one
blue chip and one red chip, they cancel out.  So the ratio of red chips
to blue chips does not matter; only the excess of red chips over blue
chips matters.  There were eight red chips and four blue chips in
twelve samples; therefore, four more red chips than blue chips.  Thus
the posterior odds will be:

74:34 = 2401:81

which is around 30:1, i.e., around 97%.

The prior credibility starts at 0 decibels and there's a total of around
14 decibels of evidence, and indeed this corresponds to odds of
around 25:1 or around 96%.  Again, there's some rounding error, but
if you performed the operations using exact arithmetic, the results
would be identical.

We can now see intuitively that the bookbag problem would have
exactly the same answer, obtained in just the same way, if sixteen
chips were sampled and we found ten red chips and six blue chips.

You are a mechanic for gizmos.  When a gizmo stops working,
it is due to a blocked hose 30% of the time.  If a gizmo's hose
is blocked, there is a 45% probability that prodding the gizmo
will produce sparks.  If a gizmo's hose is unblocked, there is
only a 5% chance that prodding the gizmo will produce
sparks.  A customer brings you a malfunctioning gizmo.  You



sparks.  A customer brings you a malfunctioning gizmo.  You
prod the gizmo and find that it produces sparks.  What is the
probability that a spark-producing gizmo has a blocked hose?

Calculator: 

 Result: 

 Compute!

What is the sequence of arithmetical operations that you performed to
solve this problem?

(45%*30%) / (45%*30% + 5%*70%)

Similarly, to find the chance that a woman with positive
mammography has breast cancer, we computed:

p(positive|cancer)*p(cancer)

_______________________________________________

p(positive|cancer)*p(cancer) +

p(positive|~cancer)*p(~cancer)

    which is
p(positive&cancer) / [p(positive&cancer) +

p(positive&~cancer)]

    which is
p(positive&cancer) / p(positive)

    which is
p(cancer|positive)

The fully general form of this calculation is known as Bayes' Theorem
or Bayes' Rule:

0



p(A|X) =
        p(X|A)*p(A)         

  p(X|A)*p(A) + p(X|~A)*p(~A)

Given some phenomenon A that we want to investigate, and an
observation X that is evidence about A - for example, in the previous
example, A is breast cancer and X is a positive mammography -
Bayes' Theorem tells us how we should update our probability of A,
given the new evidence X.

By this point, Bayes' Theorem may seem blatantly obvious or even
tautological, rather than exciting and new.  If so, this introduction has
entirely succeeded in its purpose.

Fun
Fact!

Q.  Who originally discovered Bayes'
Theorem?
A.  The Reverend Thomas Bayes, by far the
most enigmatic figure in mathematical history. 
Almost nothing is known of Bayes's life, and
very few of his manuscripts survived.  Thomas
Bayes was born in 1701 or 1702 to Joshua
Bayes and Ann Carpenter, and his date of
death is listed as 1761.  The exact date of
Thomas Bayes's birth is not known for certain
because Joshua Bayes, though a surprisingly
wealthy man, was a member of an unusual,
esoteric, and even heretical religious sect, the



esoteric, and even heretical religious sect, the
"Nonconformists".  The Nonconformists kept
their birth registers secret, supposedly from
fear of religious discrimination; whatever the
reason, no true record exists of Thomas
Bayes's birth.  Thomas Bayes was raised a
Nonconformist and was soon promoted into
the higher ranks of the Nonconformist
theosophers, whence comes the "Reverend"
in his name.

In 1742 Bayes was elected a Fellow of the
Royal Society of London, the most prestigious
scientific body of its day, despite Bayes having
published no scientific or mathematical works
at that time.  Bayes's nomination certificate
was signed by sponsors including the
President and the Secretary of the Society,
making his election almost certain.  Even
today, however, it remains a mystery why
such weighty names sponsored an unknown
into the Royal Society.

Bayes's sole publication during his known
lifetime was allegedly a mystical book entitled
Divine Benevolence, laying forth the original
causation and ultimate purpose of the
universe.  The book is commonly attributed to
Bayes, though it is said that no author
appeared on the title page, and the entire
work is sometimes considered to be of
dubious provenance.

Most mysterious of all, Bayes' Theorem itself
appears in a Bayes manuscript presented to
the Royal Society of London in 1764, three
years after Bayes's supposed death in 1761!

Despite the shocking circumstances of its
presentation, Bayes' Theorem was soon
forgotten, and was popularized within the
scientific community only by the later efforts of
the great mathematician Pierre-Simon
Laplace.  Laplace himself is almost as
enigmatic as Bayes; we don't even know
whether it was "Pierre" or "Simon" that was
his actual first name.  Laplace's papers are
said to have contained a design for an AI
capable of predicting all future events, the so-



capable of predicting all future events, the so-
called "Laplacian superintelligence".  While it
is generally believed that Laplace never tried
to implement his design, there remains the
fact that Laplace presciently fled the guillotine
that claimed many of his colleagues during the
Reign of Terror.  Even today, physicists
sometimes attribute unusual effects to a
"Laplacian Operator" intervening in their
experiments.

In summary, we do not know the real
circumstances of Bayes's birth, the ultimate
origins of Bayes' Theorem, Bayes's actual
year of death, or even whether Bayes ever
really died.  Nonetheless "Reverend Thomas
Bayes", whatever his true identity, has the
greatest fondness and gratitude of Earth's
scientific community.

So why is it that some people are so excited about Bayes' Theorem?

"Do you believe that a nuclear war will occur in the next 20 years?  If
no, why not?"  Since I wanted to use some common answers to this
question to make a point about rationality, I went ahead and asked
the above question in an IRC channel, #philosophy on EFNet.

One EFNetter who answered replied "No" to the above question, but
added that he believed biological warfare would wipe out "99.4%" of
humanity within the next ten years.  I then asked whether he believed
100% was a possibility.  "No," he said.  "Why not?", I asked.
 "Because I'm an optimist," he said.  (Roanoke of #philosophy on
EFNet wishes to be credited with this statement, even having been
warned that it will not be cast in a complimentary light.  Good for
him!)  Another person who answered the above question said that he
didn't expect a nuclear war for 100 years, because "All of the players
involved in decisions regarding nuclear war are not interested right
now."  "But why extend that out for 100 years?", I asked.  "Pure
hope," was his reply.

What is it exactly that makes these thoughts "irrational" - a poor way
of arriving at truth?  There are a number of intuitive replies that can
be given to this; for example:  "It is not rational to believe things only
because they are comforting."  Of course it is equally irrational to
believe things only because they are discomforting; the second error
is less common, but equally irrational.  Other intuitive arguments
include the idea that "Whether or not you happen to be an optimist



include the idea that "Whether or not you happen to be an optimist
has nothing to do with whether biological warfare wipes out the
human species", or "Pure hope is not evidence about nuclear war
because it is not an observation about nuclear war."

There is also a mathematical reply that is precise, exact, and
contains all the intuitions as special cases.  This mathematical reply
is known as Bayes' Theorem.

For example, the reply "Whether or not you happen to be an optimist
has nothing to do with whether biological warfare wipes out the
human species" can be translated into the statement:

p(you are currently an optimist | biological war occurs within ten years
and wipes out humanity) =
p(you are currently an optimist | biological war occurs within ten years
and does not wipe out humanity)

Since the two probabilities for p(X|A) and p(X|~A) are equal,
Bayes' Theorem says that p(A|X) = p(A); as we have earlier
seen, when the two conditional probabilities are equal, the revised
probability equals the prior probability.  If X and A are unconnected -
statistically independent - then finding that X is true cannot be
evidence that A is true; observing X does not update our probability
for A; saying "X" is not an argument for A.

But suppose you are arguing with someone who is verbally clever
and who says something like, "Ah, but since I'm an optimist, I'll have
renewed hope for tomorrow, work a little harder at my dead-end job,
pump up the global economy a little, eventually, through the trickle-
down effect, sending a few dollars into the pocket of the researcher
who ultimately finds a way to stop biological warfare - so you see, the
two events are related after all, and I can use one as valid evidence
about the other."  In one sense, this is correct - any correlation, no
matter how weak, is fair prey for Bayes' Theorem; but Bayes'
Theorem distinguishes between weak and strong evidence.  That is,
Bayes' Theorem not only tells us what is and isn't evidence, it also
describes the strength of evidence.  Bayes' Theorem not only tells us
when to revise our probabilities, but how much to revise our
probabilities.  A correlation between hope and biological warfare may
exist, but it's a lot weaker than the speaker wants it to be; he is
revising his probabilities much too far.

Let's say you're a woman who's just undergone a mammography. 
Previously, you figured that you had a very small chance of having
breast cancer; we'll suppose that you read the statistics somewhere
and so you know the chance is 1%.  When the positive
mammography comes in, your estimated chance should now shift to
7.8%.  There is no room to say something like, "Oh, well, a positive



7.8%.  There is no room to say something like, "Oh, well, a positive
mammography isn't definite evidence, some healthy women get
positive mammographies too.  I don't want to despair too early, and
I'm not going to revise my probability until more evidence comes in. 
Why?  Because I'm a optimist."  And there is similarly no room for
saying, "Well, a positive mammography may not be definite evidence,
but I'm going to assume the worst until I find otherwise.  Why? 
Because I'm a pessimist."  Your revised probability should go to
7.8%, no more, no less.

Bayes' Theorem describes what makes something "evidence" and
how much evidence it is.  Statistical models are judged by
comparison to the Bayesian method because, in statistics, the
Bayesian method is as good as it gets - the Bayesian method defines
the maximum amount of mileage you can get out of a given piece of
evidence, in the same way that thermodynamics defines the
maximum amount of work you can get out of a temperature
differential.  This is why you hear cognitive scientists talking about
Bayesian reasoners.  In cognitive science, Bayesian reasoner is the
technically precise codeword that we use to mean rational mind.

There are also a number of general heuristics about human
reasoning that you can learn from looking at Bayes' Theorem.

For example, in many discussions of Bayes' Theorem, you may hear
cognitive psychologists saying that people do not take prior
frequencies sufficiently into account, meaning that when people
approach a problem where there's some evidence X indicating that
condition A might hold true, they tend to judge A's likelihood solely by
how well the evidence X seems to match A, without taking into
account the prior frequency of A.  If you think, for example, that
under the mammography example, the woman's chance of having
breast cancer is in the range of 70%-80%, then this kind of
reasoning is insensitive to the prior frequency given in the problem; it
doesn't notice whether 1% of women or 10% of women start out
having breast cancer.  "Pay more attention to the prior frequency!" is
one of the many things that humans need to bear in mind to partially
compensate for our built-in inadequacies.

A related error is to pay too much attention to p(X|A) and not enough
to p(X|~A) when determining how much evidence X is for A.  The
degree to which a result X is evidence for A depends, not only on the
strength of the statement we'd expect to see result X if A were true,
but also on the strength of the statement we wouldn't expect to see
result X if A weren't true.  For example, if it is raining, this very
strongly implies the grass is wet - p(wetgrass|rain) ~ 1 - but
seeing that the grass is wet doesn't necessarily mean that it has just
rained; perhaps the sprinkler was turned on, or you're looking at the
early morning dew.  Since p(wetgrass|~rain) is substantially



early morning dew.  Since p(wetgrass|~rain) is substantially
greater than zero, p(rain|wetgrass) is substantially less than
one.  On the other hand, if the grass was never wet when it wasn't
raining, then knowing that the grass was wet would always show that
it was raining, p(rain|wetgrass) ~ 1, even if
p(wetgrass|rain) = 50%; that is, even if the grass only got wet
50% of the times it rained.  Evidence is always the result of the
differential between the two conditional probabilities.  Strong evidence
is not the product of a very high probability that A leads to X, but the
product of a very low probability that not-A could have led to X.

The Bayesian revolution in the sciences is fueled, not only by more
and more cognitive scientists suddenly noticing that mental
phenomena have Bayesian structure in them; not only by scientists in
every field learning to judge their statistical methods by comparison
with the Bayesian method; but also by the idea that science itself is a
special case of Bayes' Theorem; experimental evidence is Bayesian
evidence.  The Bayesian revolutionaries hold that when you perform
an experiment and get evidence that "confirms" or "disconfirms" your
theory, this confirmation and disconfirmation is governed by the
Bayesian rules.  For example, you have to take into account, not only
whether your theory predicts the phenomenon, but whether other
possible explanations also predict the phenomenon.  Previously, the
most popular philosophy of science was probably Karl Popper's
falsificationism - this is the old philosophy that the Bayesian
revolution is currently dethroning.  Karl Popper's idea that theories
can be definitely falsified, but never definitely confirmed, is yet
another special case of the Bayesian rules; if p(X|A) ~ 1 - if the
theory makes a definite prediction - then observing ~X very strongly
falsifies A.  On the other hand, if p(X|A) ~ 1,  and we observe X,
this doesn't definitely confirm the theory; there might be some other
condition B such that p(X|B) ~ 1, in which case observing X
doesn't favor A over B.  For observing X to definitely confirm A, we
would have to know, not that p(X|A) ~ 1, but that p(X|~A) ~ 0,
which is something that we can't know because we can't range over
all possible alternative explanations.  For example, when Einstein's
theory of General Relativity toppled Newton's incredibly well-
confirmed theory of gravity, it turned out that all of Newton's
predictions were just a special case of Einstein's predictions.

You can even formalize Popper's philosophy mathematically.  The
likelihood ratio for X, p(X|A)/p(X|~A), determines how much
observing X slides the probability for A; the likelihood ratio is what
says how strong X is as evidence.  Well, in your theory A, you can
predict X with probability 1, if you like; but you can't control the
denominator of the likelihood ratio, p(X|~A) - there will always be
some alternative theories that also predict X, and while we go with
the simplest theory that fits the current evidence, you may someday
encounter some evidence that an alternative theory predicts but your



encounter some evidence that an alternative theory predicts but your
theory does not.  That's the hidden gotcha that toppled Newton's
theory of gravity.  So there's a limit on how much mileage you can
get from successful predictions; there's a limit on how high the
likelihood ratio goes for confirmatory evidence.

On the other hand, if you encounter some piece of evidence Y that is
definitely not predicted by your theory, this is enormously strong
evidence against your theory.  If p(Y|A) is infinitesimal, then the
likelihood ratio will also be infinitesimal.  For example, if p(Y|A) is
0.0001%, and p(Y|~A) is 1%, then the likelihood ratio
p(Y|A)/p(Y|~A) will be 1:10000.  -40 decibels of evidence!  Or
flipping the likelihood ratio, if p(Y|A) is very small, then
p(Y|~A)/p(Y|A) will be very large, meaning that observing Y
greatly favors ~A over A.  Falsification is much stronger than
confirmation.  This is a consequence of the earlier point that very
strong evidence is not the product of a very high probability that A
leads to X, but the product of a very low probability that not-A could
have led to X.  This is the precise Bayesian rule that underlies the
heuristic value of Popper's falsificationism.

Similarly, Popper's dictum that an idea must be falsifiable can be
interpreted as a manifestation of the Bayesian conservation-of-
probability rule; if a result X is positive evidence for the theory, then
the result ~X would have disconfirmed the theory to some extent.  If
you try to interpret both X and ~X as "confirming" the theory, the
Bayesian rules say this is impossible!  To increase the probability of
a theory you must expose it to tests that can potentially decrease its
probability; this is not just a rule for detecting would-be cheaters in
the social process of science, but a consequence of Bayesian
probability theory.  On the other hand, Popper's idea that there is only
falsification and no such thing as confirmation turns out to be
incorrect.  Bayes' Theorem shows that falsification is very strong
evidence compared to confirmation, but falsification is still
probabilistic in nature; it is not governed by fundamentally different
rules from confirmation, as Popper argued.

So we find that many phenomena in the cognitive sciences, plus the
statistical methods used by scientists, plus the scientific method itself,
are all turning out to be special cases of Bayes' Theorem.  Hence the
Bayesian revolution.

Fun
Fact!

Q.  Are there any limits to the power of
Bayes' Theorem?
A.  According to legend, one who fully grasped
Bayes' Theorem would gain the ability to
create and physically enter an alternate



create and physically enter an alternate
universe using only off-the-shelf equipment
and a short computer program.  One who fully
grasps Bayes' Theorem, yet remains in our
universe to aid others, is known as a
Bayesattva.

p(A|X) =
        p(X|A)*p(A)         

  p(X|A)*p(A) + p(X|~A)*p(~A)

Why wait so long to introduce Bayes' Theorem, instead of just
showing it at the beginning?  Well... because I've tried that before;
and what happens, in my experience, is that people get all tangled
up in trying to apply Bayes' Theorem as a set of poorly grounded
mental rules; instead of the Theorem helping, it becomes one more
thing to juggle mentally, so that in addition to trying to remember how
many women with breast cancer have positive mammographies, the
reader is also trying to remember whether it's p(X|A) in the
numerator or p(A|X), and whether a positive mammography result
corresponds to A or X, and which side of p(X|A) is the implication,
and what the terms are in the denominator, and so on.  In this
excruciatingly gentle introduction, I tried to show all the workings of
Bayesian reasoning without ever introducing the explicit Theorem as
something extra to memorize, hopefully reducing the number of
factors the reader needed to mentally juggle.

Even if you happen to be one of the fortunate people who can easily
grasp and apply abstract theorems, the mental-juggling problem is
still something to bear in mind if you ever need to explain Bayesian
reasoning to someone else.

If you do find yourself losing track, my advice is to forget Bayes'
Theorem as an equation and think about the graph.  p(A) and p(~A)
are at the top.  p(X|A) and p(X|~A) are the projection factors.  p(X&A)
and p(X&~A) are at the bottom.  And p(A|X) equals the proportion of
p(X&A) within p(X&A)+p(X&~A).  The graph isn't shown here - but
can you see it in your mind?

And if thinking about the graph doesn't work, I suggest forgetting
about Bayes' Theorem entirely - just try to work out the specific
problem in gizmos, hoses, and sparks, or whatever it is.



Having introduced Bayes' Theorem explicitly, we can explicitly
discuss its components.

p(A|X) =
        p(X|A)*p(A)         

  p(X|A)*p(A) + p(X|~A)*p(~A)

We'll start with p(A|X).  If you ever find yourself getting confused
about what's A and what's X in Bayes' Theorem, start with p(A|X) on
the left side of the equation; that's the simplest part to interpret.  A is
the thing we want to know about.  X is how we're observing it; X is
the evidence we're using to make inferences about A.  Remember
that for every expression p(Q|P), we want to know about the
probability for Q given P, the degree to which P implies Q - a more
sensible notation, which it is now too late to adopt, would be p(Q<-
P).

p(Q|P) is closely related to p(Q&P), but they are not identical. 
Expressed as a probability or a fraction, p(Q&P) is the proportion of
things that have property Q and property P within all things; i.e., the
proportion of "women with breast cancer and a positive
mammography" within the group of all women.  If the total number of
women is 10,000, and 80 women have breast cancer and a positive
mammography, then p(Q&P) is 80/10,000 = 0.8%.  You might say
that the absolute quantity, 80, is being normalized to a probability
relative to the group of all women.  Or to make it clearer, suppose
that there's a group of 641 women with breast cancer and a positive
mammography within a total sample group of 89,031 women.  641 is
the absolute quantity.  If you pick out a random woman from the
entire sample, then the probability you'll pick a woman with breast
cancer and a positive mammography is p(Q&P), or 0.72% (in this
example).

On the other hand, p(Q|P) is the proportion of things that have
property Q and property P within all things that have P; i.e., the
proportion of women with breast cancer and a positive
mammography within the group of all women with positive
mammographies.  If there are 641 women with breast cancer and
positive mammographies, 7915 women with positive
mammographies, and 89,031 women, then p(Q&P) is the probability
of getting one of those 641 women if you're picking at random from
the entire group of 89,031, while p(Q|P) is the probability of getting
one of those 641 women if you're picking at random from the smaller
group of 7915.

In a sense, p(Q|P)really means p(Q&P|P), but specifying the extra
P all the time would be redundant.  You already know it has property



P all the time would be redundant.  You already know it has property
P, so the property you're investigating is Q - even though you're
looking at the size of group Q&P within group P, not the size of
group Q within group P (which would be nonsense).  This is what it
means to take the property on the right-hand side as given; it means
you know you're working only within the group of things that have
property P.  When you constrict your focus of attention to see only
this smaller group, many other probabilities change.  If you're taking
P as given, then p(Q&P) equals just p(Q) - at least, relative to the
group P.  The old p(Q), the frequency of "things that have property Q
within the entire sample", is revised to the new frequency of "things
that have property Q within the subsample of things that have
property P".  If P is given, if P is our entire world, then looking for
Q&P is the same as looking for just Q.

If you constrict your focus of attention to only the population of eggs
that are painted blue, then suddenly "the probability that an egg
contains a pearl" becomes a different number; this proportion is
different for the population of blue eggs than the population of all
eggs.  The given, the property that constricts our focus of attention, is
always on the right side of p(Q|P); the P becomes our world, the
entire thing we see, and on the other side of the "given"  P always
has probability 1 - that is what it means to take P as given.  So
p(Q|P) means "If P has probability 1, what is the probability of Q?" or
"If we constrict our attention to only things or events where P is true,
what is the probability of Q?"  Q, on the other side of the given, is
not certain - its probability may be 10% or 90% or any other number. 
So when you use Bayes' Theorem, and you write the part on the left
side as p(A|X) - how to update the probability of A after seeing X, the
new probability of A given that we know X, the degree to which X
implies A - you can tell that X is always the observation or the
evidence, and A is the property being investigated, the thing you want
to know about.

The right side of Bayes' Theorem is derived from the left side through
these steps:

p(A|X) = p(A|X)

p(A|X) =
 p(X&A) 

p(X)

p(A|X) =
     p(X&A)      

p(X&A) + p(X&~A)

p(A|X) =
        p(X|A)*p(A)         

  p(X|A)*p(A) + p(X|~A)*p(~A)

The first step, p(A|X) to p(X&A)/p(X), may look like a tautology. 
The actual math performed is different, though.  p(A|X) is a single



The actual math performed is different, though.  p(A|X) is a single
number, the normalized probability or frequency of A within the
subgroup X.  p(X&A)/p(X) are usually the percentage frequencies
of X&A and X within the entire sample, but the calculation also works
if X&A and X are absolute numbers of people, events, or things. 
p(cancer|positive) is a single percentage/frequency/probability,
always between 0 and 1.  (positive&cancer)/(positive) can
be measured either in probabilities, such as 0.008/0.103, or it might
be expressed in groups of women, for example 194/2494.  As long as
both the numerator and denominator are measured in the same
units, it should make no difference.

Going from p(X) in the denominator to p(X&A)+p(X&~A) is a very
straightforward step whose main purpose is as a stepping stone to
the last equation.  However, one common arithmetical mistake in
Bayesian calculations is to divide p(X&A) by p(X&~A), instead of
dividing p(X&A) by [p(X&A) + p(X&~A)].  For example, someone
doing the breast cancer calculation tries to get the posterior
probability by performing the math operation 80 / 950, instead of 80 /
(80 + 950).  I like to think of this as a rose-flowers error.  Sometimes
if you show young children a picture with eight roses and two tulips,
they'll say that the picture contains more roses than flowers. 
(Technically, this would be called a class inclusion error.)  You have
to add the roses and the tulips to get the number of flowers, which
you need to find the proportion of roses within the flowers.  You can't
find the proportion of roses in the tulips, or the proportion of tulips in
the roses.  When you look at the graph, the bottom bar consists of all
the patients with positive results.  That's what the doctor sees - a
patient with a positive result.  The question then becomes whether
this is a healthy patient with a positive result, or a cancerous patient
with a positive result.  To figure the odds of that, you have to look at
the proportion of cancerous patients with positive results within all
patients who have positive results, because again, "a patient with a
positive result" is what you actually see.  You can't divide 80 by 950
because that would mean you were trying to find the proportion of
cancerous patients with positive results within the group of healthy
patients with positive results; it's like asking how many of the tulips
are roses, instead of asking how many of the flowers are roses. 
Imagine using the same method to find the proportion of healthy
patients.  You would divide 950 by 80 and find that 1,187% of the
patients were healthy.  Or to be exact, you would find that 1,187% of
cancerous patients with positive results were healthy patients with
positive results.

The last step in deriving Bayes' Theorem is going from p(X&A) to
p(X|A)*p(A), in both the numerator and the denominator, and from
p(X&~A) to p(X|~A)*p(~A), in the denominator.

Why?  Well, one answer is because p(X|A), p(X|~A), and p(A)



Why?  Well, one answer is because p(X|A), p(X|~A), and p(A)
correspond to the initial information given in all the story problems. 
But why were the story problems written that way?

Because in many cases, p(X|A), p(X|~A), and p(A) are what we
actually know; and this in turn happens because p(X|A) and p(X|~A)
are often the quantities that directly describe causal relations, with
the other quantities derived from them and p(A) as statistical
relations.  For example, p(X|A), the implication from A to X, where A
is what we want to know and X is our way of observing it,
corresponds to the implication from a woman having breast cancer to
a positive mammography.  This is not just a statistical implication but
a direct causal relation; a woman gets a positive mammography
because she has breast cancer.  The mammography is designed to
detect breast cancer, and it is a fact about the physical process of
the mammography exam that it has an 80% probability of detecting
breast cancer.  As long as the design of the mammography machine
stays constant, p(X|A) will stay at 80%, even if p(A) changes - for
example, if we screen a group of woman with other risk factors, so
that the prior frequency of women with breast cancer is 10% instead
of 1%.  In this case, p(X&A) will change along with p(A), and so will
p(X), p(A|X), and so on; but p(X|A) stays at 80%, because that's a
fact about the mammography exam itself.  (Though you do need to
test this statement before relying on it; it's possible that the
mammography exam might work better on some forms of breast
cancer than others.)  p(X|A) is one of the simple facts from which
complex facts like p(X&A) are constructed; p(X|A) is an elementary
causal relation within a complex system, and it has a direct physical
interpretation.  This is why Bayes' Theorem has the form it does; it's
not for solving math brainteasers, but for reasoning about the
physical universe.

Once the derivation is finished, all the implications on the right side
of the equation are of the form p(X|A) or p(X|~A), while the
implication on the left side is p(A|X).  As long as you remember this
and you get the rest of the equation right, it shouldn't matter whether
you happened to start out with p(A|X) or p(X|A) on the left side of the
equation, as long as the rules are applied consistently - if you started
out with the direction of implication p(X|A) on the left side of the
equation, you would need to end up with the direction p(A|X) on the
right side of the equation.  This, of course, is just changing the
variable labels; the point is to remember the symmetry, in order to
remember the structure of Bayes' Theorem.

The symmetry arises because the elementary causal relations are
generally implications from facts to observations, i.e., from breast
cancer to positive mammography.  The elementary steps in
reasoning are generally implications from observations to facts, i.e.,
from a positive mammography to breast cancer.  The left side of
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from a positive mammography to breast cancer.  The left side of
Bayes' Theorem is an elementary inferential step from the
observation of positive mammography to the conclusion of an
increased probability of breast cancer.  Implication is written right-to-
left, so we write p(cancer|positive) on the left side of the
equation.  The right side of Bayes' Theorem describes the elementary
causal steps - for example, from breast cancer to a positive
mammography - and so the implications on the right side of Bayes'
Theorem take the form p(positive|cancer) or
p(positive|~cancer).

And that's Bayes' Theorem.  Rational inference on the left end,
physical causality on the right end; an equation with mind on one
side and reality on the other.  Remember how the scientific method
turned out to be a special case of Bayes' Theorem?  If you wanted to
put it poetically, you could say that Bayes' Theorem binds reasoning
into the physical universe.
Okay, we're done.

Reverend Bayes says:

You are now an initiate
of the Bayesian Conspiracy.

Further Reading:
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wish to read A Technical Explanation of Technical Explanation by the
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wish to read A Technical Explanation of Technical Explanation by the
same author, which goes into greater detail on the application of Bayescraft
to human rationality and the philosophy of science. You may also enjoy the
Twelve Virtues of Rationality and The Simple Truth.

Other authors:

E. T. Jaynes:  Probability Theory With Applications in Science and
Engineering (full text online).  Theory and applications for Bayes' Theorem
and Bayesian reasoning. See also Jaynes's magnum opus, Probability
Theory: The Logic of Science.

D. Kahneman, P. Slovic and A. Tversky, eds, Judgment under
uncertainty:  Heuristics and biases.  If it seems to you like human thinking
often isn't Bayesian... you're not wrong.  This terrifying volume catalogues
some of the blatant searing hideous gaping errors that pop up in human
cognition. See also this forthcoming book chapter for a summary of some
better-known biases.

Bellhouse, D.R.:  The Reverend Thomas Bayes FRS: a Biography to
Celebrate the Tercentenary of his Birth.  A more "traditional" account of
Bayes's life.

Google Directory for Bayesian analysis (courtesy of the Open Directory
Project).
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