
Activity #14:  More Simple Linear Regression Section x.x 
 
Resources:  beer.sav 
 
 
Recall the last activity in which we calculated a least-squares regression line and some indices of accuracy.  The following table and 
graph display the relationship between a beer brand’s media expenditures and shipment volumes. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
1) When we conduct a linear regression analysis, we are often interested in finding the most parsimonious model (the simplest model 

that can explain the variance in the dependent variable.  Even though our regression equation: 
 

   (Y = 0.21x + 2.76) appears to be relatively simple, it can be broken down into even simpler models. 
 

(1) The simplest model would be one in which we have no model:  
 
(2) If that model were found to be inadequate, we could try making the model a bit more complex.  We could create a model 

in which each value of Y is predicted by a single number, b:     .  We would then determine whether or not this 
model provided a significantly better prediction of Y than the first model. 

 
(3) We could then try an even more complex model in which each value of Y is predicted by a constant (the y-intercept) and 

a slope:     . .  If this model provided us a more accurate prediction, we may decide to throw out the simpler 
models and use this full model. 

 
(4) Finally, we could find another independent variable that may help explain variance in the dependent variable (in the beer 

example, the variable “cost per bottle” might also help predict the number of bottle shipped).  If the addition of this 
second variable provided us with a better prediction, we may decide to use this two-variable model:  

   

.  .  This process of adding another predictive variable and testing its impact on the accuracy of  
 

prediction could continue. 
 
 
 
 
 
 
2) At each stage in building models, the value of adding complexity to the regression model predictive accuracy may be assessed 

through hypothesis testing procedures.  This allows the researcher to decide which terms and independent variables belong in the 
final model.   
 
We will later learn that this process may be reversed.  We may begin with a full regression model and try to simplify that model by 
eliminating independent variables that add little to the accuracy of predicting the dependent variable.  
 
Using the beer data, let’s discover how to test the significance of each term in the regression model. 
 
 

Brand Media Expenditure Shipment 
Busch 8.7 8.1 
MGD 21.5 5.6 
Bud Light 68.7 20.7 
Coors Light 76.6 13.2 
Miller Lite 100.1 15.9 
Budweiser 120.0 36.3 

Mean 65.933 16.633 
Std. Deviation 43.5017 11.0471 

Correlation 0.829 
Source:  Superbrands 1998; 10/20/97 
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3) Let’s use the simplest model,             to predict shipment volumes for our beer brands.  How do we measure the accuracy of our 
prediction? 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
4) Our next model:          attempts to predict each value of Y by a single number.  If this is our model, what single number will 

minimize the sum of squared deviations from Y?  The following table evaluates the accuracy of this predictive model.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
5) The last column represents the sum of squared deviations that is not due to error (or the amount of variation that is due to the 

regression model).  You should also notice that SSE + Ssreg = SSY (or the sum of squares for the “no model” model).  This will 
always be the case.  The variation in the dependent variable can always be partitioned into: 

(1) the amount (or proportion) of variance due to the regression model 
(2) the amount (or proportion) of variance due to error (not accounted for by the model) 

 
This partitioning of SS is often summarized in an ANOVA table: 

 
ANOVA 

Source Sum of Squares df Mean Square F Sig. 

! 

"
0  1660 1 1660 13.61 .02 

Error 610 4 122   
Total 2270 5    

Least Squares Regression Line:  Y = 0 
Observed Predicted Prediction Error Squared Error 
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8.7 8.1 0 8.1 65.61 

21.5 5.6 0 5.6 31.36 

68.7 20.7 0 20.7 428.49 

76.6 13.2 0 13.2 174.24 

100.1 15.9 0 15.9 252.81 

120.0 36.3 0 36.3 1317.69 

Sum 2270.20 

Least Squares Regression Line:  Y = (Mean of Y) 
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8.7 8.1 16.633 -8.533 72.812 276.657 

21.5 5.6 16.633 -11.033 121.727 276.657 

68.7 20.7 16.633 4.067 16.540 276.657 

76.6 13.2 16.633 -3.433 11.785 276.657 

100.1 15.9 16.633 -0.733 0.537 276.657 

120.0 36.3 16.633 19.667 386.791 276.657 

Sum 610.192 1659.95 
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6) Let’s examine that ANOVA summary table.  We already know what the Sums of Squares represent.  SStotal  represents the total 

amount of variation in Y (or the sum of the squared vertical distance between the Y values and the x-axis).  SSE represents the 
amount of variance in Y not explained by the model.  The degrees of freedom for each row is the number of values from which the 
SS is calculated.  For example, SStotal is based on n=6 values.  Likewise, SSregression is based on one value, the mean.  SSE is 
based on N-1 df because one df is lost for the estimation of     . 

 
Mean squares are calculated by dividing the SS by its respective df.  The F-value (MSR) is then compared to a critical value with 1 
df in the numerator and 4 df in the denominator.  You can see this MSR is significant at a 0.02 level. 
 
 
 
 
 
 
 
 

7) In a little bit, we will see why an F-test is used to check the significance of regression coefficients.  Before we go on, I must state 
that we very rarely test for significance of     .   The vast majority of measurements in a variety of fields are different from zero, so 
we just assume      is significant.  We will not test for the significance of      in this class. 

 
Another model with a single value:         could be compared to the “no model” case to see if it added significant predictive 
accuracy.  Since we will always assume that       is significant, we will not conduct this test either. 
 
 
 
 
 
 
 
 

8) A much more common and interesting approach to testing hypotheses in simple linear regression is to examine the effect of adding 
the      term to the model after the      term has been entered.  The general procedure is similar to the previous case.  The predicted 
values of the full model are compared to the predicted values of the reduced model to find the increase in predictive power.  The 
increase in predictive power is divided by error variance to find a ratio to test for additional predictive power.   

 
 

In our example, we wish to compare the following two models: 
 
 
 

Full model:        Reduced Model:   
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

It appears as though the full mode significantly reduces the total error in prediction.  If we quantify the sums of squares, we can 
conduct a hypothesis test to see if this decrease in error is statistically significant.  The table on the top of the next page compares 
the predictive accuracy of the full and reduced models: 
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To help visualize the columns of this table, take a look at the following display.  Identify each column of the table in the display and 
express what each column represents. 
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9) The first five columns should be familiar to you, with the fifth column representing SSE (the sum of squared residuals).  Column 7 
represents the increase in predictive power of the full model over the partial model.  This is what we call SSreg (the increased 
amount of variability predicted by the full model).  This SSreg is often written mathematically as:            (“the sum of squares of      

              given      “).  
 
 

You should note that SSreg and SSE for the full model sum to SSE for the partial model; ignoring errors due to rounding.  In our 
example,     .  This means that the variability in Y that cannot be predicted by the reduced model is partitioned 
into two parts: (1) that which can be predicted by the addition of the X term to the model and (2) that which cannot be explained by 
X.   

 
 

Everything we’ve done can be summarized in an ANOVA table:   
 

ANOVA 

Source Sum of Squares df Mean Square F Sig. 

! 

"
0  1660 1 1660 13.61 .02 

Error      . 610 4 122   

! 

"
1|0  417 1 417 8.73 .04 

Error (Full) 191 4 47.75   

Total 2270 5    
 

The significant F-ratio for the full model (at an alpha-level of .05) indicates that the independent variable does significantly improve 
our prediction accuracy.   

 
 
 
 
 
 
 
 
 
 
10) I realize these concepts are difficult to understand all at once.  Right now, it is my hope that you are able to follow the logic behind 

significance testing in a linear regression analysis.  We will go over the specific steps of these hypothesis tests in a bit.  First, let’s 
see if we can figure out why we use F-ratios to test the significance of factors in our predictive models. 

 
The following page lists the summary statistics we can calculate from our dataset.  I recommend that you verify these statistics on 
your own time.  For now, just explain what each statistic represents. 
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You can see most of these statistics are related 
(just rearrange terms) 

 
 
 
 
 
 
 
 



11) Now suppose we wish to conduct a hypothesis test to see if      is significantly different from zero (to see if it should be included in 
our prediction model).  What general form do our test statistics take?  Write out the formula for the test statistic of interest. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12) Let’s rearrange some of the terms in this test statistic.  See if you can follow along: 
 
 
 

So far, we’ve just substituted other formulas for several of the terms. 
 
 
 
 
 
 
 
 
        
 
 
 
 
 
 
 
 
 
 
        
 
 
 
 
 
 
 
 
 
        
 
 
 
 
 
 
 
 
    This is the test statistic for testing the significance of a correlation coefficient. 
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13) Let’s stop here to stress that last statement.  If you wish to test the significance of a correlation coefficient, you conduct a simple t-
test with n-2 degrees of freedom.  Let’s test the significance of our correlation of 0.829. 
 

 
 
 
 
 
 
 
 
 

14) The value of that test statistic should look familiar.  It is the same value as the test statistic for testing the beta coefficient in a linear 
regression analysis.  This is important.  Since r and      are so closely related (look at their formulas), we can use the same 
hypothesis test to test the significance of either statistic.  But that still doesn’t explain why we used an F-test to test the significance 
of the regression terms. 

 
Let’s look once again at that F-test we conducted.  By rearranging terms... 
 
 
 
 
 
We can see that an F-test is equivalent to the square of a t-test.  We know from our answer to #13 that our t-statistic was 
calculated as 2.96.  Therefore, the F-test we calculated way back in #9 should be (2.96)2 = 8.76.  You can verify that we did indeed 
obtain that value (with some rounding error). 
 
 
 
 
Our test statistic for testing the significance of a regression term or a correlation coefficient is: 
 
 
 
 
 
 
 
Where: k = # of independent variables 
  Full = full model (includes the term we want to test) 
  Reduced = reduced model (simplified model) 
  N = number of observations 
  R = correlation coefficient. 
 
 
 
In the next activity, we will go through examples of linear regression analysis.. 
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