Multiple Linear Regression Examples

Predicting Freshman GPAs.

Question: What variables can we use to predict a student's first-year GPA?

Variable List: GPA = freshman GPA

HSGPA = student's high school GPA

SATM = SAT Math score

SATVERB = SAT Verbal score

SATTOT = SAT Total score

LETTERS = quality of reference letters

GENDER = sex

MINORITY = Caucasian or minority

APCOURSE = Number of AP courses in high school

HEIGHT = Height in inches

Dependent variable: GPA

What is the best combination of variables to use to predict a student's GPA?

Order of Entry:	 Reasoning:

Reduced Model: $\hat{Y} = b_0$

	SS		
Total Variance in Y (SSY)	$\sum \left(Y - \overline{Y} \right)^{Y} = \sum (n-1)S_{Y}^{2} =$		

Source	SS	df	MS	F
Regression (b_1, b_2, b_3, b_4)				
$b_4 \mid b_1 b_2 b_3$				
Епог				
$b_3 \mid b_1 b_2$				
Error				
$b_2 \mid b_1$				
Епог				
b_1				
Error				
Total		N – 1 = 104		