Solutions to ANOVA exercises

f)

i

NOTE: You can use an online ANOVA calculator at http://www.danielsoper.com/statcalc/calc43.aspx (google "ANOVA calculator")

1) Decide whether or not an ANOVA is appropriate.

- a) Are we comparing two or more group (treatment) means?
- b) Does our data meet the assumptions necessary to run an ANOVA?
 - a. Are the groups independent?
 - b. Are the observations within each group normally distributed? (Graph, p-p plot, or use Kolmogorov-Smirnov test)
 - c. Homogeneity of variance assumption: Are the group/treatment variances equal?
 - Use the F_{max} test to check for equal variances:

Compute: $F_{\max} = \frac{\sigma_{largest}^2}{\sigma_{smallest}^2}$ and compare to $F_{\max n-1}^a$ from the F_{max} table, where a = # of groups and n = observations per group.

If your calculated F_{max} < the F_{max} value from the table, you can procede.

If your calculated F_{max} > the F_{max} value from the table, we cannot conduct an ordinary ANOVA.

- c) State the null and alternate hypotheses: H_0
- $H_0: \mu_1 = \mu_2 = \dots = \mu_a \quad \text{vs.} \quad H_A: \text{ Not } H_0$ or $H_0: \alpha_j = 0 \quad \text{vs.} \quad H_A: \alpha_j \neq 0$

d) Calculate the sample means and standard deviations for each treatment: $\overline{X_a} = \frac{1}{n_a} \sum x_{ia}$ and $s_a = \sqrt{\frac{\sum (x_{ia} - \overline{X_a})^2}{n_a - 1}}$

e) Calculate the overall mean:
$$M = \overline{X} = \frac{\sum n_a X_a}{N}$$

- Calculate sums of squares: $SS_A = \sum n_a (\overline{X}_a M)^2$ $SS_E = \sum (n_a 1)s_a^2$ $SS_T = SS_A + SS_E$
- g) Calculate degrees of freedom: $df_A = a 1$ $df_E = N a$ $df_T = N 1$
- h) Fill-in the ANOVA summary table with your calculated SS and df values:

Source	Sums of Squares	Degrees of freedom	Mean Square	Mean Square Ratio
Between Groups				
(Treatment Effect)				
Within Groups				
(Error variance)				
Total				

) Calculate the mean squares:
$$MS_A = \frac{SS_A}{df_A}$$
 $MS_E = \frac{SS_E}{df_E}$

j) Calculate the mean square ratio: $MSR = \frac{MS_A}{MS_E}$ and compare it to F_{N-a}^{a-1} from the F-tables.

If MSR > F_{N-a}^{a-1} we reject the null hypothesis. If MSE < F_{N-a}^{a-1} we retain the null hypothesis.

k) Calculate the effect size: $\eta^2 = \frac{SS_A}{SS_T}$ (the proportion of total variance accounted for by the treatments)

Write your conclusion and perform appropriate follow-up tests.

Exercise #1:

		Sugar		
	N	Mean	SD	
Shelf #1	20	4.80	2.138	
Shelf #2	20	9.85	1.985	
Shelf #3	20	6.10	1.865	

 $H_0: \alpha_j = 0$ (the three shelves have equal population means; no treatment effect) $H_A: \alpha_j \neq 0$ (the treatment means are not all equal; a treatment effect exists) $\sigma_{largest}^2 = 2.138^2$

$$F_{\max} = \frac{\sigma_{largest}}{\sigma_{smallest}^2} = \frac{2.138^2}{1.865^2} = 1.314 \quad \text{compared to} \quad F_{\max 19}^{-3} = 2.95 \quad \text{(OK to move on)}$$

 $M = \overline{\overline{X}} = \frac{(20)(4.8) + (20)(9.85) + (20)(6.10)}{60} = 6.9167$

$$MS_{A} = \frac{SS_{A}}{df_{A}} = \frac{(20)(4.8 - 6.9167)^{2} + (20)(9.85 - 6.9167)^{2} + (20)(6.10 - 6.9167)^{2}}{3 - 1} = \frac{275.03}{2} = 137.515$$

$$MS_E = \frac{SS_E}{df_E} = \frac{(20-1)(2.138)^2 + (20-1)(1.985)^2 + (20-1)(1.865)^2}{60-3} = \frac{227.8}{57} = 3.996$$

Source	SS	df	MS	MSR
Shelf Effect	275.03	2	137.515	$\frac{137.515}{3.996} = 34.413$
Error	227.8	57	3.996	$F_{eq}^2 = 3.15$
Total	502.83	59		57

Since our calculated (observed) ratio is bigger than the critical F-value, we reject the null hypothesis.

$$\eta^2 = \frac{275.03}{502.83} = 0.547$$

54.7% of the variance in sugar is accounted for by shelf location.

Exe	rcise	#2·
	10130	π

		Fiber		
	Ν	Mean	SD	
Shelf #1	20	1.68	1.166	
Shelf #2	20	0.95	1.162	
Shelf #3	20	2.17	1.277	

 $H_0: \alpha_j = 0$ (the three shelves have equal population means; no treatment effect) $H_A: \alpha_j \neq 0$ (the treatment means are not all equal; a treatment effect exists)

$$F_{\max} = \frac{\sigma_{largest}^2}{\sigma_{smallest}^2} = \frac{1.277^2}{1.166^2} = 1.208 \quad \text{compared to} \quad F_{\max 19}^{-3} = 2.95 \quad \text{(OK to move on)}$$

$$M = \overline{X} = \frac{(20)(1.68) + (20)(0.95) + (20)(2.17)}{60} = 1.6$$

$$MS_{A} = \frac{SS_{A}}{df_{A}} = \frac{(20)(1.68 - 1.6)^{2} + (20)(0.95 - 1.6)^{2} + (20)(2.17 - 1.6)^{2}}{3 - 1} = \frac{15.076}{2} = 7.538$$

$$MS_E = \frac{SS_E}{df_E} = \frac{(20-1)(1.166)^2 + (20-1)(1.162)^2 + (20-1)(1.277)^2}{60-3} = \frac{82.47}{57} = 1.447$$

Source	SS	df	MS	MSR
Shelf Effect	15.076	2	7.538	$\frac{7.538}{1.447} = 5.21$
Error	82.47	57	1.447	$F_{57}^2 = 3.15$
Total	97.546	59		57

Since our calculated (observed) ratio is bigger than the critical F-value, we reject the null hypothesis.

$$\eta^2 = \frac{15.076}{97.546} = 0.15$$

15% of the variance in fiber is accounted for by shelf location. Is this of practical significance?

Exercise #3:

		Thickness		
	N	Mean	SD	
Group 1	30	3.015	0.107	
Group 2	30	3.018	0.155	
Group 3	30	2.996	0.132	

 $H_0: \alpha_j = 0$ (the three production lines produce glass of the same thickness) $H_A: \alpha_j \neq 0$ (the production line effects the thickness of glass)

$$F_{\max} = \frac{\sigma_{largest}^2}{\sigma_{smallest}^2} = \frac{0.155^2}{0.107^2} = 2.098 \text{ compared to } F_{\max 29}^3 = 2.07 \text{ (We shouldn't continue)}$$

$$M = \overline{\overline{X}} = \frac{(30)(3.015) + (30)(3.018) + (30)(2.996)}{90} = 3.01$$

$$MS_{A} = \frac{SS_{A}}{df_{A}} = \frac{(30)(3.015 - 3.01)^{2} + (30)(3.018 - 3.01)^{2} + (30)(2.996 - 3.01)^{2}}{3 - 1} = \frac{0.00855}{2} = 0.004275$$

$$MS_{E} = \frac{SS_{E}}{df_{E}} = \frac{(30-1)(.107)^{2} + (30-1)(.155)^{2} + (30-1)(.132)^{2}}{90-3} = \frac{1.534}{87} = 0.0176$$

Source	SS	df	MS	MSR
Line	.0086	2	.004275	$\frac{.004275}{.0176} = 0.243$
Error	1.534	87	0.0176	$F_{s_7}^2 = 3.09$
Total	1.5426	89		07

Since our calculated (observed) ratio is smaller than the critical F-value, we retain the null hypothesis.

$$\eta^2 = \frac{.0086}{1.534} = 0.0056$$

0.56% of the variance in glass thickness is due to production line differences. You can see why there is no significant group effect.

Exercise #4:

		Insects		
	N	Mean	SD	
Yellow	6	47.167	6.795	
White	6	15.667	3.327	
Green	6	31.5	9.915	
Blue	6	14.833	5.345	

 $H_0: \alpha_j = 0$ (the colors make no difference) $H_A: \alpha_j \neq 0$ (the treatment means are not all equal; a treatment effect exists) $F_{\text{max}} = \frac{9.915^2}{3.327^2} = 9.19$ compared to $F_{\text{max}5}^4 = 13.7$ (OK to move on)

$$M = \overline{X} = \frac{6[47.167 + 15.667 + 31.5 + 14.833]}{24} = 27.29$$

$$MS_{A} = \frac{SS_{A}}{df_{A}} = \frac{6\left[\left(47.167 - 27.29\right)^{2} + \left(15.667 - 27.29\right)^{2} + \left(31.5 - 27.29\right)^{2} + \left(14.833 - 27.29\right)^{2}\right]}{4 - 1} = \frac{4218.54}{3} = 1406.18$$

$$MS_E = \frac{SS_E}{df_E} = \frac{(20-1)[6.795^2 + 3.327^2 + 9.915^2 + 5.345^2]}{24-4} = \frac{920.586}{20} = 46.03$$

Source	SS	df	MS	MSR
Color	4218.54	3	1406.18	$\frac{1406.16}{46.03} = 30.55$
Error	920.586	20	46.03	$F_{20}^3 = 3.03$
Total	5139.126	23		20

Since our calculated (observed) ratio is bigger than the critical F-value, we reject the null hypothesis.

$$\eta^2 = \frac{4218.54}{5139.126} = 0.82$$

82% of the variance in insects captured is accounted for by color.

Exercise #5:

Source	SS	df	MS	MSR
Groups	476.88	3	158.96	2.53
Error	2009.92	32	62.81	
Total	2486.8	35		
Source	SS	df	MS	MSR
Groups	126.9534	7	18.1362	5.01
Error	79.64	22	3.62	
Total	206.5934	29		

$$\eta^2 = \frac{476.88}{2486.8} = 0.19$$

$$\eta^2 = \frac{126.9534}{79.64} = 0.6145$$

Exercise #6:

Caffeine	Taps per minute	Mean	Std. Dev.
0 mg	242 245 244 248 247 248 242 244 246 242	244.8	2.394
100 mg	248 246 245 247 248 250 247 246 243 244	246.4	2.066
200 mg	246 248 250 252 248 250 246 248 245 250	248.4	2.214

Test of Homogeneity of Variances

TAPS			
Levene			
Statistic	df1	df2	Sig.
.292	2	27	.749

ANOVA

TAPS

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	61.400	2	30.700	6.181	.006
Within Groups	134.100	27	4.967		
Total	195.500	29			

Multiple Comparisons

Dependent Variable: TAPS

			Mean				
			Difference			95% Confide	ence Interval
	(I) CAFFENE	(J) CAFFENE	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Tukey HSD	0 mg	100 mg	-1.60	.997	.261	-4.07	.87
		200 mg	-3.50*	.997	.004	-5.97	-1.03
	100 mg	0 mg	1.60	.997	.261	87	4.07
		200 mg	-1.90	.997	.156	-4.37	.57
	200 mg	0 mg	3.50*	.997	.004	1.03	5.97
		100 mg	1.90	.997	.156	57	4.37
Bonferroni	0 mg	100 mg	-1.60	.997	.360	-4.14	.94
		200 mg	-3.50*	.997	.005	-6.04	96
	100 mg	0 mg	1.60	.997	.360	94	4.14
		200 mg	-1.90	.997	.202	-4.44	.64
	200 mg	0 mg	3.50*	.997	.005	.96	6.04
		100 mg	1.90	.997	.202	64	4.44

*. The mean difference is significant at the .05 level.

Top secret information:

Let's take one more look at the data for exercise #6:

п

Caffeine	Taps per minute	Mean	Std. Dev.
0 mg	242 245 244 248 247 248 242 244 246 242	244.8	2.394
100 mg	248 246 245 247 248 250 247 246 243 244	246.4	2.066
200 mg	246 248 250 252 248 250 246 248 245 250	248.4	2.214

If we were to pool all 30 observations into a single group and calculate the variance, we would calculate our grand mean to be:

$$M = \frac{\sum_{i=1}^{N} X_i}{N} = \frac{242 + 245 + \dots + 250}{30} = 246.5$$

We could also calculate a variance of our single group of 30 observations (a grand variance?) to be:

$$s^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}{n-1} = \frac{(242 - 246.5)^{2} + \dots + (250 - 246.5)^{2}}{30 - 1} = 2.596416629^{2}$$

What does this variance represent? It represents the average variation in all our data.

Recall our conceptualization of S_{total} . We said it represents the *total* variation in our data. This implies that we can convert between our grand variance and S_{total} .

$$SS_{total} = \sum_{i=1}^{n} (X_i - M)^2 = \sum_{i=1}^{n} (X_i - \overline{X})^2 = (N - 1) \left[\frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{N - 1} \right] = (N - 1)s^2$$

So if we calculate (or if we're given) the variance for our entire data set, we can use that to calculate SS_{total} .

In this example:

$$SS_{total} = (N-1)s^2 = (30-1)(2.596416629^2) = 195.5$$