
Activity #10:  Simple linear regression 

 Relationship between body weight (in kg) Relationship between high school GPA                                                        
 and heart weight (in g) for 144 house cats and first-semester St. Ambrose GPAs in 2013                                                   

1. Above, you can see scatterplots from two datasets.  On top of each scatterplot, I’ve plotted the line that best-fits the 
data.  In this activity, we’ll learn what it means to be the “best” fitting line, how to find the formula for that line, how to 
interpret the slope and y-intercept, and how to evaluate whether the line fits “good enough.” 

Looking at the scatterplots and regression lines displayed above, do you think the datasets have linear 
relationships?  In other words, if you wanted to sketch a function through the data points that best describes the 
relationship between X and Y, would you choose a line?  How well do lines fit these datasets? 

2. Interpret the slope and y-intercept for the scatterplot on the top-left.  What do they mean with regards to the data in 
the scatterplot? 

3. Predict the brain weight of a cat that weighs 3 kg.  Predict the brain weight of a cat that weighs 20 kg.  In which 
prediction do you have more confidence?  How confident are you with your predictions? 

R. A. Fisher (1947) The analysis of covariance 
method for the relation between a part and 

the whole, Biometrics 3, 65–68.

2013-14 MAP-Works data

y = –0.396 + 0.937xy = –0.357 + 4.0341x

X = 2.723611      Y = 10.63056
sx = 0.485307      sy = 2.43464
n = 144                r = 0.804

X = 3.235433      Y = 2.63624
sx = 0.543623      sy = 0.75097
n = 508                r = 0.678
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4. The top-right scatterplot shows the degree to which high school GPAs might predict first-semester GPAs at St. 
Ambrose.  If we wanted to improve the prediction of first-semester GPAs, what other predictors should we add to 
our model? 

5. To build-up our intuition and derive some important formulas, let’s turn to an extremely small dataset.  The following 
table and scatterplot display the relationship between media expenditures and number of bottles shipped for 6 
brands of beer: 

Based on the correlation coefficient, one could argue that the variables have a linear relationship.  If this is true, we 
can construct the following model:  shipments = f(media) + error.  Substituting y=shipments and x=media, we get: 

If we’re going to use a linear function to model this relationship, we know we’re going to need to find the slope (b1) 
and y-intercept (b0) of this line.  We can, therefore, write out our linear model as: 

This model we created implies that the number of bottles shipped by a beer company is a function of the amount 
they spend on advertising plus other stuff.  Our goal, then, will be to estimate the parameters of this model (the 
slope and y-intercept) and determine how well the model fits the data. 

On the scatterplot displayed above, sketch the line that you think best fits the data.  Below, estimate the slope and y-
intercept of the line you sketched. 

Y = ______________________ (x) + ______________________ 
        (slope)                             (y-intercept) 

Brand
Media Expenditures 

(millions of $)
Bottles Shipped 

(in millions)

Busch 8.7 8.1
Miller Genuine Draft 21.5 5.6

Bud Light 68.7 20.7

Coors Light 76.6 13.2

Miller Lite 100.1 15.9

Budweiser 120.0 36.3

mean 65.9333 16.6333
std. dev 43.5017 11.0471

correlation                  correlation:  r = 0.8288
Source:  Superbrands, 1998; 10/20/1997

yi = f x( )+ ei

yi = f x  b0,  b1( )+ ei
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6. I imagine everyone has different values for the slope and y-intercept.  How could we determine which line is best?   

Suppose 3 students sketched the following lines.  Which line is best?  What do the numbers in the tables represent? 

Observed Predicted error error2

Media (x) Shipped (y)

8.7 8.1 16.633 -8.533 72.812
21.5 5.6 16.633 -11.033 121.727

68.7 20.7 16.633 4.067 16.5405

76.6 13.2 16.633 -3.433 11.785

100.1 15.9 16.633 -0.733 0.537

120.0 36.3 16.633 19.667 386.791

Sum = 0.002 610.193

�y − ŷ( )�̂y �y − ŷ( )2
y = 16.633 + 0x

Observed Predicted error error2

Media (x) Shipped (y)

8.7 8.1 2.675 5.425 29.431
21.5 5.6 5.875 -0.275 0.076

68.7 20.7 17.675 3.025 9.151

76.6 13.2 19.65 -6.45 41.602

100.1 15.9 25.525 -9.625 92.641

120.0 36.3 30.5 5.8 33.64

Sum = -2.1 206.541

�y − ŷ( )�̂y �y − ŷ( )2

Observed Predicted error error2

Media (x) Shipped (y)

8.7 8.1 4.58725 3.51275 12.339
21.5 5.6 7.28165 -1.68165 2.828

68.7 20.7 17.21725 3.48275 12.13

76.6 13.2 18.8802 -5.6802 32.265

100.1 15.9 23.82695 -7.92695 62.837

120.0 36.3 28.0 8.2841 68.626

Sum = -0.009 191.025

�y − ŷ( )�̂y �y − ŷ( )2y = 2.7559 + 0.2105x

y = 0.50 + 0.25x

Note: This would be our best prediction if we 
didn’t know anything about media expenditures 
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Busch

MGD

Bud 
Light

Coors 
Light

Miller 
Lite

Bud

Y = 16.633

ŷ = 2.7559 + 0.2105x

y − ŷ( )

y −Y( )

y

X = 65.933      Y = 16.633
sx = 43.502      sy = 11.047
n = 6                r = 0.8288
R2 = 0.82882 = 0.687

SSY = yi −Y( )2∑ = n −1( )sy2 = SSE + SSreg = 610.2
SSreg = ŷ −Y( )2∑ = R2SSY = SSY − SSE = 419.2

SSE = yi − ŷ( )2∑ = 1− R2( )SSY = SSY − SSreg = 191.0

ŷ −Y( )
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7. It turns out the best-fitting line for the data is y = 2.7559 + 0.2105x.  Use that line to “predict” the number of bottles 
shipped by a company that spent $76.6 million on advertising.   

 Predicted number of bottles shipped = f(76.6) = _______________________________________________________ 

Coors Light spent $76.6 million on advertising and shipped 13.2 million bottles.  How far off was your prediction? 

8. No line – not even the best line – will fit all the data with perfect accuracy.  There’s always some amount of random 
error (and, probably, measurement error). 

Why, then, wouldn’t we simply connect-the-dots to create our prediction model?  Why might we prefer an imperfect 
line to a perfect connect-the-dots model? 

9. We’re always going to have some amount of unexplained, random, or measurement error in the data, so the line will 
never fit perfectly.  The best-fitting line, however, will minimize the total amount of error (the sum of the distances 
between the points and the line).  

If distances between points and the prediction line represent error, which distances (errors) are we interested in 
minimizing?  Do we want to minimize the horizontal, vertical, or perpendicular distances?  Why? 

 horizontal errors vertical errors perpendicular errors                                                                                                                            
  least squares error-in-both-variables regression                                                                                                                                                                         
  assumes x values are “good” measures orthogonal (Deming) regression                                                                                                                           
  or that we chose the x values “perpendicular” changes as units change                                                                                                                                     

y = 2.7559 + 0.2105x
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10. Assuming we’re interested in the error in predicting y values from given x values, we want to minimize the vertical 
distances.  Below, I’ve drawn in these vertical errors for two potential regression lines.  I then calculated the total 
length of the lines to find the sum of these errors: 

Since the sum of the errors for the line on the left is less than that for the line on the right, the line on the left better 
fits our data.  Now all we have to do is find the sum of the errors for every possible line we could draw for our data. 

That could take forever, so let’s use some math to find the formula for the line that best fits a given dataset.   

To do this, let’s establish some notation: 

We want to find the line that minimizes the sum of those errors.  We want to minimize: 

The problem is that some of the errors will be positive (when the observed data is above the prediction line) and 
some errors will be negative (when the observed data is below the prediction line).  If we find the sum of these 
values, the positive and negative errors will cancel each other out.  More importantly, the sum of errors would 
actually be minimized with a regression line that is drawn way up above all the data points (and, therefore, is not a 
good fit at all). 

How can we deal with this issue?  How can we ensure all the errors are positive?   

We could take the absolute value of our errors (like I did in the example at the top of this page).  We could 
minimize: 

This is the approach used in quantile regression (which we’ll learn about later in the semester).  One of the 
problems with absolute values is that they’re difficult to work with algebraically. 

Another way to ensure all the errors are positive would be to square each error.  We’d then want to minimize: 

This gives us a nice (mathematically speaking) function we can minimize using Calculus.  It also has the feature/bug 
of magnifying outliers.  When we square large errors (outliers), those squared errors get huge. 

prediction line

observed data
error

total error (sum of 
all line lengths)

xi ,  yi( )←  the coordinate of a data point
ŷi = b0 + b1xi + e←  our linear model
e = yi − ŷi( ) = yi − b0 + b1xi( ) = yi − b0 − b1xi ←  error 

yi − b0 − b1xi
i=1

n

∑

yi − b0 − b1xi
i=1

n

∑

yi − b0 − b1xi( )2
i=1

n

∑
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Derivation of the Parameters of the Least Squares Regression Line 
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Now we must solve this system of two normal equations… 

Y 

X 

Observed  ),(
ii
YX  

Predicted  
i

XbbY
10
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10

i
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XbbYYY +!=!  

We must find the slope 
and y-intercept for this 
line so that the sum of 
these squared errors is 
minimized. 

(Chain Rule) 

(Chain Rule) 
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Now that we have formulas to calculate the slope and y-intercept of our 
least-squares regression line (the line of “best” fit), we need to find some 
way to determine if that line is any good.  We can find the least-squares 
regression line for any dataset, but it doesn’t mean the line is a good fit 
(or meaningful). 

See the example to the right: 

System of normal equations: 
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So, the line that minimizes the sum of squared errors has the following slope and y-intercept parameters: 
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In our example, r = 0.829; sy = 43.5017; sx = 11.0471.  Using the mean values of X and Y, we can compute: 
 
   
 
 
 
 
 
 
Now that we can compute a regression line and interpret its coefficients, we need to find some way of measuring the accuracy of our 
prediction line.  We already know that the least-squares regression line is the line of best fit (it minimizes the sum of squared residuals 
(oftentimes called SSresidual or SSE)).  What we don’t know is whether or not that best-fitting line actually does a good job of fitting the 
data.  (For example, imagine a scatterplot of two uncorrelated variables.  The shape of the scatterplot would be a circle.  We could fit 
the least-squares line to the data, but it still wouldn’t fit the data very well.  
 

! 

ˆ " 1 = r
sy

sx
= (0.829)

11.0471

43.5017

# 

$ 
% 

& 

' 
( = 0.21

! 

ˆ " 0 =Y # ˆ " 1X =16.633# (0.21)(65.933) = 2.76
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11. We’re going to try out several measures of how well our regression line fits the data.  Let’s see if we can figure out 
the value of each measure under two situations:  (a) a model that fits perfectly, and (b) a model that doesn’t fit at all.  

Eventually, we’ll want to fill-in this table: 

12. The first potential measure of how well a regression line fits the data would be to simply look at SSE (the sum of the 
squared errors).  What would SSE equal if the line fit the data perfectly?  

Now suppose we have uncorrelated variables – knowing the value of X would not tell us anything about the value 
of Y.  What would the least-squares regression line look like in this case?  We’d need to find the value of m that 
would minimize the following: 

If you remember from a previous statistics class, this value is minimized when M equals the sample mean.  
Therefore, our best prediction for uncorrelated variables would be:  

That formula should look familiar.  That’s our good friend SStotal from ANOVA (or SSy, as we’ll refer to it in 
regression).  What’s the largest value we could possible get for SSE? 

If we add one more observation to our data, what has to happen to the value of SSE? 

Measure / Index

0

_______________

0�sy|x = SSE
dfE

=
yi − ŷ( )2∑
n − 2

� yi −Y( )2∑ = SSy = n −1( )sy2

�  
Value for perfect fit

�sy|x2 = SSE
dfE

=
yi − ŷ( )2∑
n − 2

�  
Value for no fit

�sy
n −1
n − 2

= SSY
n − 2

�R2 = SSreg
SSY

=
ŷ −Y( )2∑
yi −Y( )2∑

�SSE = yi − ŷ( )2∑

�1− R2 = SSE
SSY

=
yi − ŷ( )2∑
yi −Y( )2∑

� n −1
n − 2

⎛
⎝⎜

⎞
⎠⎟ sy

2 = SSY
n − 2

yi −M( )2∑

yi −Y( )2∑
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13. The size of SSE depends on a few factors, such as the amount of variation in our data, the number of observations 
we have in our data, and the degree to which a line fits the data.  

It seems problematic that adding data would automatically increase the size of SSE.  Perhaps it would be better to 
calculate the average squared error (or mean squared error).  This would give us the variance of the estimate: 

This variance of the estimate represents the average squared distance from each observation to the prediction line.   
In a situation with perfect fit, what would this measure equal?  Write that in the table on the previous page.  

With uncorrelated variables, what would be the maximum value of the variance of the estimate?   

14. I don’t know about you, but I’d prefer our measure of good-fit to not be in squared units.  We can fix that easily 
enough: 

This measure is called the standard error of the estimate.  What does it represent?  Sketch a scatterplot and show 
what the standard error of the estimate would be visually. 

Since this is simply the square root of the variance of the estimate, it’s easy to find the values under situations with 
perfect and no fit.  These values have been filled-in the table on the previous page. 

18) The first index of accuracy we may want to evaluate is SSE, the sum of squared residuals               .  To evaluate how well SSE 
serves as an index of accuracy, let’s calculate the maximum and minimum values of SSE. 

 
The minimum value of SSE would occur when every observed value of Y falls upon the prediction line.  If this is the case, there 
would be zero distance between each point and its predicted value.  Therefore, when we have a perfect prediction, SSE = 0. 
 
The maximum value of SSE would occur when we have uncorrelated variables (knowing the value of X would not tell us anything 
about the value of Y).  The scatterplot of uncorrelated variables would look like a circle: 

 
What would the least-squares regression line look like in this case?  Well, we 
always want to minimize the sum of squared residuals. 
 
Minimize:        where a represents the predicted value of Y. 
 
We know that this is minimized when a = the mean of Y (by definition, the mean is 
the value that minimizes the sum of squared deviations). 
 
Therefore, the maximum value of SSE (minimum prediction accuracy) is:  
 
  which we remember is called SSY or SSTOTAL in ANOVA. 

 
 
 
 
 
 
Some factors that influence the size of SSE are: 

(1) Variation around the linear regression line 
 

           Smaller SSE    Larger SSE 
 
 
 
 
 
 
 
 
 

 
(2) Nonlinearity (appropriateness of a linear model). 

 
Larger SSE    Smaller SSE 

 
 
 
 
 
 
 
 
 
 
 
 

Some problems with using SSE as an index of accuracy: 
 

(1) It varies with n (adding observations almost always increases SSE).  We’d like a per-observation index… 
 
 
       Variance of the estimate (variance of Y given X) 
 
 
 
 

(2) It’s expressed in squared units.     Standard error of estimate 
 
 
 

! 

Y " ˆ Y ( )
2

X 

Y 

! 

Y " a( )
2

#

! 

Y "Y( )
2

#

X 

Y 

X 

Y 

X 

Y 

X 

Y 

! 

SSE

n " 2
=

Y " ˆ Y ( )
2

#
n " 2

= S
Y |X

2

! 

SSE

n " 2
=

Y " ˆ Y ( )
2

#
n " 2

= S
Y |X

18) The first index of accuracy we may want to evaluate is SSE, the sum of squared residuals               .  To evaluate how well SSE 
serves as an index of accuracy, let’s calculate the maximum and minimum values of SSE. 

 
The minimum value of SSE would occur when every observed value of Y falls upon the prediction line.  If this is the case, there 
would be zero distance between each point and its predicted value.  Therefore, when we have a perfect prediction, SSE = 0. 
 
The maximum value of SSE would occur when we have uncorrelated variables (knowing the value of X would not tell us anything 
about the value of Y).  The scatterplot of uncorrelated variables would look like a circle: 

 
What would the least-squares regression line look like in this case?  Well, we 
always want to minimize the sum of squared residuals. 
 
Minimize:        where a represents the predicted value of Y. 
 
We know that this is minimized when a = the mean of Y (by definition, the mean is 
the value that minimizes the sum of squared deviations). 
 
Therefore, the maximum value of SSE (minimum prediction accuracy) is:  
 
  which we remember is called SSY or SSTOTAL in ANOVA. 

 
 
 
 
 
 
Some factors that influence the size of SSE are: 

(1) Variation around the linear regression line 
 

           Smaller SSE    Larger SSE 
 
 
 
 
 
 
 
 
 

 
(2) Nonlinearity (appropriateness of a linear model). 

 
Larger SSE    Smaller SSE 

 
 
 
 
 
 
 
 
 
 
 
 

Some problems with using SSE as an index of accuracy: 
 

(1) It varies with n (adding observations almost always increases SSE).  We’d like a per-observation index… 
 
 
       Variance of the estimate (variance of Y given X) 
 
 
 
 

(2) It’s expressed in squared units.     Standard error of estimate 
 
 
 

! 

Y " ˆ Y ( )
2

X 

Y 

! 

Y " a( )
2

#

! 

Y "Y( )
2

#

X 

Y 

X 

Y 

X 

Y 

X 

Y 

! 

SSE

n " 2
=

Y " ˆ Y ( )
2

#
n " 2

= S
Y |X

2

! 

SSE

n " 2
=

Y " ˆ Y ( )
2

#
n " 2

= S
Y |X

sy|x
2 = SSE

dfE
=

yi − ŷ( )2∑
n − 2

max sy|x
2{ } = yi −Y( )2∑

n − 2
= n −1

n − 2
⎛
⎝⎜

⎞
⎠⎟

yi −Y( )2∑
n −1

⎛

⎝
⎜

⎞

⎠
⎟ =

n −1
n − 2

⎛
⎝⎜

⎞
⎠⎟ sy

2 = SSY
n − 2

sy|x = sy|x
2 = SSE

dfE
=

yi − ŷ( )2∑
n − 2
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15. The maximum value of each of our measures is still unbounded.  Ideally, our measure would have a fixed minimum 
and maximum.   

Suppose we took our total sums of squares (the variation in Y) and partitioned it.  We know some of that variation is 
unexplained by our regression line, so we could calculate the following: 

This happens to equal one minus our correlation coefficient squared.  Under the perfect-fit and no-fit scenarios, 
what would be the value of this ratio of error variance to total variance?  Write those values in our table. 

16. That measure seems backwards – it equals zero when we have perfect fit and it equals 1 when we have no fit.  Let’s 
invert that by taking: 

This is the coefficient of determination and it has the same interpretation as eta-squared in an ANOVA.  Fill-in the 
table to show the values of this measure under perfect and no-fit situations. 

17. In most cases, the best measures of how well a line models a dataset are the coefficient of determination and the 
standard error of the estimate (or the RMSE, the root mean squared error).  Identify the advantage of each measure 
to determine how well a line fits a dataset. 

18. We’ve derived the least squares criterion and formulas to calculate the slope and y-intercept for that line of best fit.  
We’ve also derived some measures we can use to indicate how well that best-fitting line actually fits the data.  
There are only a few things left to do to fully understand simple linear regression: 

a) Practice using technology to estimate these regression lines 
b) Figure out how to determine if a regression line fits the data “good enough” 
c) Investigate the assumptions we’re making when we estimate these least-squares regression lines. 

SSE
SSY

=
yi −Y( )2∑
yi − ŷ( )2∑

= 1− r2

r2 = R2 = SSY − SSE
SSY

=
SSreg
SSY

=
ŷ −Y( )2∑
yi − ŷ( )2∑
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19. Let’s take another look at the beer data.  To 
estimate the least squares regression line in Stata, 
I would simply use the command: 

regress shipment media

To regress shipments on media expenditures in R, 
I would use the command: 

lm(shipment ~ media, data=beer)

This tells R to find a linear model (lm) where 
shipment is a function of media.  With just this 
command, we would get the following output: 

Coefficients:
(Intercept)        media  
     2.7559       0.2105  

If we want to know more than the slope and intercept of the best-fitting line, we need to use some additional 
commands.  First, we can store our linear model (under the name “model” in this example).  We can then get a 
summary of the model using the summary() command: 

model = lm(ship~media, data=beer)
summary(model)

This produces the following output: 

Residuals:
     1      2      3      4      5      6 
 3.513 -1.681  3.484 -5.678 -7.925  8.287 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)  
(Intercept)  2.75591    5.46812   0.504   0.6408  
media        0.21048    0.07104   2.963   0.0414 *
---
Residual standard error: 6.911 on 4 degrees of freedom
Multiple R-squared:  0.6869, Adjusted R-squared:  0.6087 
F-statistic: 8.777 on 1 and 4 DF,  p-value: 0.04145

What, if anything, can we interpret from that output?  We can also use other R commands to get more information: 

 Command What the command does…                                   
 plot(model) Creates diagnostic plots to check assumptions (output on the next page)                            
 coef(model) Returns the coefficients of the model                            
 confint(model) Returns confidence intervals for the coefficients of the model                     
 vcov(model) Returns the variance/covariance matrix                            
 residuals(model) Returns the residuals (errors) for each observation in the dataset            

 predict(model) Returns the predicted values for each observation in the dataset              

 anova(model) Summarizes the model in an ANOVA summary table (output on the next page)                

Let’s take a look at the diagnostic plots and ANOVA summary table on the next page: 

Brand
Media Expenditures 

(millions of $)
Bottles Shipped 

(in millions)

Busch 8.7 8.1
Miller Genuine Draft 21.5 5.6

Bud Light 68.7 20.7

Coors Light 76.6 13.2

Miller Lite 100.1 15.9

Budweiser 120.0 36.3

mean 65.9333 16.6333
std. dev 43.5017 11.0471

correlation                  correlation:  r = 0.8288
Source:  Superbrands, 1998; 10/20/1997
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20. We’ll investigate this more later, but here are the assumptions of the linear regression model (in decreasing order 
of importance: 

• Validity: The data you are analyzing maps to the research question you are trying to answer.   
 Diagnosis:  Take a careful look at the purpose of your study and the data you’ve collected           
 How to fix:  Get better data           

• Additivity and linearity: The deterministic component of the model is a linear function of the predictors.    
 Diagnosis:  Look at plots of observed vs predicted or residuals vs predicted values.  The points should             
  be symmetrically distributed around a diagonal line in the former plot or around horizontal                                 
  line in the latter plot, with a roughly constant variance.                                
 How to fix: You could transform your data (if it seems appropriate) or add a nonlinear component             

• Independent errors: No correlation among errors    
 Diagnosis:  If you have time series data, be careful that consecutive errors are not related.           

• Equal variance of errors (homoskedasticity): The variance in the errors is the same across all levels of X.   
 Diagnosis:  Look at the plot of residuals vs predicted values.  If the residuals grow larger as a function of             
  X, you have a problem.                                

• Normality of errors 
 Diagnosis:  Look at a P-P or Q-Q plot of the residuals.  The residuals should fall near the diagonal line.                             
  You could also run a test for normality, like the Shapiro-Wilk or Kologorov-Smirnov tests.                                                 
  Note that the dependent and independent variables in a regression model do not need to                                                
  be normally distributed by themselves--only the prediction errors need to be normally                                                
  distributed                                               

Here are the diagnostic plots for our beer dataset: 

Finally, here’s the ANOVA summary table for our linear model: 

Analysis of Variance Table
Response: ship
          Df Sum Sq Mean Sq F value  Pr(>F)  
media      1 419.17  419.17  8.7773 0.04145 *
Residuals  4 191.02   47.76                  
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21. Wait a second – ANOVA summary tables?  confidence intervals?  What is going on?  Let’s take a step back before 
we move on.  

I want to make sure you can calculate these least-squares regression lines without much trouble.  Let’s go ahead 
and replicate the regression lines from the beginning of this activity. 

Copy the cat data from this website:  http://www.bradthiessen.com/html5/data/cats.csv 
and paste it into this applet:  http://www.rossmanchance.com/applets/RegShuffle.htm?hideExtras=2 

Click USE DATA and you’ll see the 144 observations plotted to the right.  Now, simply click SHOW REGRESSION 
LINE to find the formula.   

You can also click SHOW RESIDUALS to see the errors.  Below that, you can get the value of R-SQUARED or a 
REGRESSION TABLE that seems to have some sort of t-test for the coefficients of our model.  You can also get a 
CONFIDENCE INTERVAL for the slope. 

This time, paste the high school / SAU GPA data from:   http://www.bradthiessen.com/html5/data/actgpa2.csv 

Write out the formula for the least-squares regression line, record SSE, and R-squared.   

22. As you can see, R-squared for this GPA dataset equals 0.46.  46% of the variation in St. Ambrose first semester 
GPAs is accounted for by high school GPAs.  Does that seem small or large to you? 

The slope of our regression line was found to be 0.9372.  Even if high school GPAs were completely uncorrelated 
with St. Ambrose GPAs, we’d expect a sample of data to have some correlation.  How unlikely were we to observe a 
slope of 0.9372 or greater if the data were uncorrelated? 

To investigate this, we can run a randomization-based test for the slope of 
our regression line.  Go back to the applet and check the SHOW SHUFFLE 
OPTIONS box.  Shuffle the data once and show the PLOT (not DATA) for 
that shuffle.  You should get something like the plot displayed to the right. 

The red line represents our observed regression line.  The blue line shows 
the regression line we’d get by randomly shuffling the Y values in our 
dataset.  Why can we do this?  If our null hypothesis is that these variables 
are uncorrelated, then there’s no reason to keep them paired together.  Any 
Y value could be paired with any X value.   

Shuffle the data at least 10,000 times and explain what the plot on the top-
right of the screen represents.  Finally, use the applet to estimate (and 
interpret) a p-value.  

(The R code for this activity shows how to conduct this test in R) 
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23. We can also use bootstrap methods to construct a confidence interval for our slope parameter. 

 Once again, copy the data from:  http://www.bradthiessen.com/html5/data/actgpa2.csv 
 Paste it into this applet:  http://lock5stat.com/statkey/bootstrap_2_quant/bootstrap_2_quant.html 

 Change the top selection to get a bootstrap interval for the SLOPE. 
 Generate 10,000 samples and describe what is happening. 
 Finally, record and interpret a 95% confidence interval for the slope of our regression line. 

  

24. You’ll practice using randomization-based tests and bootstrap confidence intervals for the slope in the assignment 
aligned with this activity.  For now, let’s move on to parametric methods used to test how well a regression model 
fits a given dataset. 

When conducting a linear regression analysis, we’re often interested in finding the most parsimonious model that 
can explain enough of the variance in the dependent variable.  To find this “best” model, we might compare 
several competing models, each increasing in complexity (nested models).  For example: 

a) We might start with the most basic model that predicts the same value for Y regardless of X.  All variation in 
observed Y values would be modeled by random error:                      .  What value would we choose for b0? 

b) We could then add one predictor to the model to create:                                 .  We could compare the 
performance of this model to the previous model to determine if the improvement in prediction justified the 
(relative) complexity of adding the predictor. 

c) We could then add yet another predictor:                                             .  Once again, we could compare this model 
to the previous model.  If this new model provided a significantly better prediction (explained a significant 
amount of previously unexplained variance), then we could decide to keep this new model.  If the model didn’t 
improve our prediction by very much, we might decide to keep the previous, simpler model. 

At each stage in building our regression model, we can assess the value of adding predictors (complexity) through 
randomization-based or parametric hypothesis testing methods.  These methods can help us determine which 
predictors to keep in our model. 

We could also work through this process backwards.  We could start with a relatively complex model, take away the 
predictor that explains the lease amount of variance in Y, and determine if the simpler model was significantly 
worse than the more complex model.   

ŷi = b0 + ei

ŷi = b0 + b1x1 + ei

ŷi = b0 + b1x1 + b2x2 + ei
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25. When comparing regression models, it’s helpful to write out the full model (the more complex model) and the 
reduced model (less complex).  When you’re analyzing your own data, you’ll choose these models (based on your 
experience with whatever data or research question you’re working with).  For now, I’ll force us to choose specific 
models. 

We’ll work one last time with this beer data.  I want to know if X (media expenditures) predicts Y (bottles shipped) 
better than a model with no predictors.  Write out our full and reduced models: 

 Full model:  _________________________________ Reduced model:  _________________________________ 

26. As we’ve already seen, the sample mean minimizes the sum of squared errors (if we have no predictor variables).  
Therefore, what does SSE represent in our reduced model? 

Our full model is the least-squares regression line (using one predictor variable).  As you can see below, the full 
model reduced our error variance by 610.193 – 191.025 = 419.168.  What does this value represent?   

27. Fill-in these SSy and SSE values in the ANOVA summary table.  How many degrees of freedom will we have? 

Observed Reduced Model Full Model
Media (x) Shipped (y) predicted error error2 predicted error error2

8.7 8.1 16.633 -8.533 72.812 4.587 3.513 12.339
21.5 5.6 16.633 -11.033 121.727 7.282 -1.682 2.828
68.7 20.7 16.633 4.067 16.541 17.217 3.483 12.130
76.6 13.2 16.633 -3.433 11.785 18.880 -5.680 32.265

100.1 15.9 16.633 -0.733 0.537 23.827 -7.927 62.837
120.0 36.3 16.633 19.667 386.791 28.016 8.284 68.626

Sum 610.193 Sum 191.025

Source of variation SS df MS MSR (F)

Regression 
(b1 | b0) _______________ ____________ ______________ ______________

Error _______________ ____________ ____________
(blank)

Total _______________ ____________ MStotal R2 = __________
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28. Complete the ANOVA summary table and estimate a p-value.  What conclusion could we make?  Remember, you 
can always use the F-distribution applet at:  http://lock5stat.com/statkey/theoretical_distribution/theoretical_distribution.html#F 

29. The only difference between our full and reduced models is the b1 coefficient (the slope).  If b1 = 0, the full model 
would be the same as our reduced model.  Another way, then, to compare our full and reduced models would be 
to test the hypothesis:  H0:  b1 = 0.  We can test this hypothesis with a t-test. 

What did that derivation just show?  Conduct this t-test and state an appropriate conclusion.  Compare the value of 
your t-statistic to the value of the MSE you calculated for the ANOVA. 

30. This time, conduct a test of the hypothesis:  H0:  rxy = 0. 

tn−2 =
(observed value)− (hypothesized value)

standard error
= b̂1 − 0
SEb1

=

tn−2 =
b̂1 − 0
SEb1

= b̂1

sy|x
sx n −1

=
rxy
sy
sx

sy 1− r2 n −1
n − 2

sx n −1

=
rxy
sy
sx
sx n −1

sy 1− r2 n −1
n − 2

=
rxy n −1

1− r2 n −1
n − 2

tn−2 =
rxy

2 n −1( )
1− r2( ) n −1

n − 2
⎛
⎝⎜

⎞
⎠⎟
=

rxy
2 n − 2( )
1− r2( ) =

rxy n − 2

1− r2
=
rxy − 0

1− r2

n − 2

=
rxy − 0
SErxy
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31. A test for the slope of a regression line is the same as a test for the correlation between x and y.  So why do we use 
an ANOVA to compare our full and reduced models?  Follow along: 

32. It can also be shown that we can calculate our omnibus F-statistic with the following: 

Verify this formula gives us the same value for our MSR (as the ANOVA table in question #27). 

33. We’ve already seen that randomization-based methods can test whether a slope coefficient is significant.  We can 
also use randomization-based methods to compare regression models. 

Paste the beer data into:  http://lock5stat.com/statkey/advanced_2_quant/advanced_2_quant.html 

Generate at least 10,000 randomized samples and report the p-value.  How does it compare to our p-value from 
the omnibus F-test? 

F = MSR =
MSreg
MSE

=
SSreg / dfreg
SSE / dfE

=
SSreg dfE( )
SSE dfreg( ) =

r2SSY n − 2( )
1− r2( )SSY 1( ) =

r2 n − 2( )
1− r2( ) = tn−2

2

F =
Rfull
2 − Rreduced

2( ) kfull − kreduced( )
1− Rfull

2( ) N − kfull −1( )

media beer
8.7 8.1

21.5 5.6
68.7 20.7
76.6 13.2

100.1 15.9
120.0 36.3
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34. Our goal is to determine whether neural activity increases as the number of years playing the violin increases.  
Suppose we decide to conduct an ANOVA.   How would we do this?  What conclusions could we draw? 

35. Paste the data into the ANOVA for Regression applet.  On the top-right, you’ll see a graph of the data along with 
the estimated slope and y-intercept for the least-squares regression line.  Write out the full and reduced models of 
interest, along with the formula for the best-fitting line. 

 Full model:  _________________________________ Reduced model:  _________________________________ 

 Formula for best-fitting regression line:  _______________________________________________ 

Scenario: A number of studies have shown that certain activities can affect the reorganization of the human central 
nervous system.  For example, it’s known that the par of the brain associated with activity of a limb is taken 
over for other purposes in individuals who have lost a limb. 

 In one study, psychologists used magnetic source imaging (MSI) to measure neuronal activity in the brains 
of 9 violin players and 6 controls (those who have never played a stringed musical instrument) when the 
fingers on their left hands were exposed to mild stimulation.  The researchers felt that stringed instrument 
players, who use the fingers on their left hand extensively, might show an increased amount of neuron 
activity.  Shown below is a neuron activity index from the MSI along with the number of years each 
individual had been playing a stringed instrument: 

You can download this data at: 
http://www.bradthiessen.com/html5/data/violin.csv 

ANOVA for Regression applet: 
http://lock5stat.com/statkey/advanced_2_quant/advanced_2_quant.html 

Subject Years played Neural activity
1 0 5.0
2 0 6.0
3 0 7.5
4 0 9.0
5 0 9.5
6 0 11.0
7 5 16.0
8 6 16.5
9 8 11.5

10 10 16.0
11 12 25.0
12 13 25.5
13 17 25.5
14 18 23.0
15 19 26.5

mean 7.2 15.56667
std. dev 7.24273 7.782459

                 correlation:  r = 0.928
Elbert, T., “Increased cortical representation of 
the fingers of the left hand in string players,” 
Science, 270, 13 October, 305-307
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36. Click the ANOVA TABLE button on the top-right and fill-in the following table.  Then, verify all these calculations. 

37. What conclusions can you draw from this analysis? 

38. Replicate that MSR by calculating the omnibus F-statistic. 

39. Explain what the following plots indicate with regards to the assumptions underlying linear regression. 

40. Finally, use the applet to conduct a randomization-based comparison of our full and reduced models.  How do the 
results compare to our parametric methods? 

Source of variation SS df MS MSR (F)

Regression 
(b1 | b0) _______________ ____________ ______________ ______________

Error _______________ ____________ ____________
(blank)

Total _______________ ____________ MStotal R2 = __________
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Scenario: Some occupations are considered to be more prestigious than others (inspiring more respect or 
admiration).  For example, most people would agree that a heart surgeon has a more prestigious 
occupation than a waitress.  We’re going to examine some factors that may influence the prestige of 
various occupations. 

 Data:  http://www.bradthiessen.com/html5/data/prestige.csv 
 Source:  Canada (1971).  Census of Canada.  Vol. 3, Part 6.  Statistics Canada, 19-21. 

 prestige: Pineo-Porter Prestige score (a survey) 
 education: average years of education for people in that occupation 
 income: average income (1971 Canadian dollars) for people in that occupation 
 percwomn: % of workers in that occupation who are female 
 type: 0=blue collar, 1=white collar, 2=professional/technical/managerial 

Correlations:
             | education  income   %women prestige
-------------+------------------------------------
   education |   1.0000
      income |   0.5776   1.0000
      %women |   0.0619  -0.4411   1.0000
    prestige |   0.8502   0.7149  -0.1183   1.0000
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41. Before attempting to model prestige, I wanted to know if the 3 occupation types differed in prestige.  Interpret 
these results: 

  occ_type  n     mean        sd
1        0 49 36.08571 11.347320
2        1 23 42.24348  9.515816
3        2 30 67.90667  8.819255

Pairwise comparisons (Bonferroni)
  0       1      
1 0.059   -      
2 < 2e-16 4.4e-14 Bartlett test of homogeneity of variances              

data:  prestige by occ_type                               
Bartlett's K-squared = 2.4469, df = 2, p= 0.2942                               

42. The relationship between prestige and income is displayed below.  Interpret the coefficients of our model (which 
you could verify using the summary statistics on the previous page). 

When I conducted this regression analysis in R, it gave me the 
following output: 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) 27.141176  2.268e+00   11.97   <2e-16 ***
income      0.0028968  2.833e-04   10.22   <2e-16 ***

Interpret those p-values and the R-squared value. 

43. Write out the full and reduced models.  Complete the ANOVA summary table.  How did we already know the MSR? 

 Full model:  _________________________________ Reduced model:  _________________________________ 

  

Source SS df MS MSR (F)

Type 17796 2 9733.576 92.40

Error 12100 99 105.336 p = 2.2 x 10-16

Total 29896 101 MStotal η2 =0.5953

y = 27.141 + 0.002896x
R2 = 0.5111

Source of variation SS df MS MSR (F)

Regression 
(b1 | b0) 15279 ____________ 15279 104.54

Error 14616 ____________ 146.16 (blank)

Total 29895 ____________
MStotal R2 = 0.5111
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44. Calculate and interpret the RMSE (root mean square error).  What does it mean in this study? 

45. Use the omnibus F-test to verify the F-statistic from the ANOVA summary table on the previous page. 

46. With our least-squares regression line, we could predict the prestige of a job with an average income of $7000: 

  
We know that prediction won’t be perfectly accurate, so it might make sense to construct a confidence interval for 
our regression coefficients.  Using R, I found the following confidence intervals: 

                   2.5 %       97.5 %
(Intercept) 22.642116976 31.640235760
income       0.002334692  0.003458907

Interpret the 95% confidence interval for the slope of our regression line:  (0.00233, 0.00345).  Why does this not 
mean we’re 95% confident that increasing an occupation’s income by $1000 will be associated with a 2.33 – 3.45 
increase in prestige. 

We could use bootstrap methods or the following formula to construct a confidence interval for our regression 
line: 

A 95% confidence interval for the average prestige of all occupations with $7000 incomes is, then: 

y = 27.141 + 0.002896(7000) = 47.41877

ŷ ± tn−2
α /2( )sy|x 1

n
+
x0 − X( )2
n −1( )sx2

where

sy|x =
yi −Y( )2
n − 2( ) = SSE

n − 2
=

1− R2( )SSY
n − 2

=
1− R2( ) n −1( )sy2

n − 2
= sy 1− R

2 n −1
n − 2

= MSE

sy|x = 146.16 = 12.089

47.41877 ± 1.984( ) 12.089( ) 1
102

+
7000 − 6797.90( )2
102 − 2( ) 4245.92( )2

= 47.41877 ± 2.38
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47. Will this confidence interval have the same width (uncertainty) for 
all values of income?  Explain. 

The confidence interval is displayed on the plot to the right. 

48. Based on our interpretation, this confidence interval didn’t give us exactly what we wanted.  We wanted an interval 
to predict the prestige of a single occupation that has a $7000 income.  The interval we calculated predicts the 
average prestige all occupations with $7000 incomes.   

If we construct an interval to predict a single future observation, that interval must be   WIDER       MORE NARROW  
than our confidence interval. 

To construct a prediction interval for our regression line, we use: 

  

The prediction interval is displayed to the right. 

Obtaining confidence or prediction intervals in R is easy.  Once you’ve specified your model, you apply the interval 
to new data using:  

predict(model, newdata, interval="confidence") predict(model, newdata, interval="predict")

The output, when our new data is a job with an income of $7000, is: 

     fit      lwr      upr      fit      lwr      upr
47.41877 45.04112 49.79642 47.41877 23.31552 71.52202

ŷi ± tn−2
α /2( )sy|x 1+ 1n +

x0 − X( )2
n −1( )sx2

47.41877 ± 1.984( ) 12.09( ) 1+ 1
102

+
7000 − 6797.90( )2
102 −1( ) 4245.92( )2

47.41877 ± 24.10
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49. Recall the assumptions underlying regression.  The 
diagram to the right attempts to display many of these 
assumptions. 

Below, I’ve pasted output from the plots(model) 
command in R.  Interpret these graphs and evaluate 
whether the assumptions appear to be satisfied in this 
case. 

Non-constant error variance test: 
Variance formula: ~ fitted.values 
Chisquare = 3.088455  Df = 1   p = 0.07885 

50. If we’re worried about the normality and/or heteroscedasticity of our residuals, we have a few options.   

a) We could transform our dependent variable to make it better approximate a normal distribution.  Here’s the 
distribution of our prestige data: 

The figure on the next page displays the distributions we would get if we were to transform the prestige data 
using logarithms, exponents, or other transformations. 
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If a transformation makes the data better approximate a normal distribution, it may mean the residuals will 
better approximate a normal distribution.  Be careful with this, though.  Once you transform the data, your linear 
model may become much more difficult to interpret. 

To learn more about transformations, check out http://onlinestatbook.com/2/transformations/tukey.html 
or http://onlinestatbook.com/2/transformations/box-cox.html 

b) You could use robust regression methods (as we’ll learn in a future activity).  Interpret the following: 

            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 27.141176  2.268e+00   11.97   <2e-16 ***
income      0.0028968  2.833e-04   10.22   <2e-16 ***

Robust linear regression                               Number of obs =     102
                                                       F(  1,   100) =   48.28
                                                       Prob > F      =  0.0000
                                                       R-squared     =  0.5111
                                                       Root MSE      =   12.09
------------------------------------------------------------------------------
             |               Robust
    prestige |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      income |   .0028968   .0004169     6.95   0.000     .0020697    .0037239
       _cons |   27.14118   2.886142     9.40   0.000     21.41515     32.8672
------------------------------------------------------------------------------

Quantile (Median) regression                         Number of obs =       102
  Raw sum of deviations     1447 (about 43.5)
  Min sum of deviations 954.6664                     Pseudo R2     =    0.3402
------------------------------------------------------------------------------
    prestige |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      income |   .0030293   .0003073     9.86   0.000     .0024196    .0036391
       _cons |   23.94584   2.518318     9.51   0.000     18.94957    28.94211
------------------------------------------------------------------------------
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c) You might also want to try to fit a model that isn’t linear.  We’ll also learn some of these methods in the future. 

   

 Best-fitting quadratic function: 

 Below:  Residuals vs. fitted plot: 

 Lowess (locally locally weighted scatterplot smoothing): 

Model:  y = b0 + b1x1 + b2x1
2 + e

y = 14.183+ 0.00615x − 0.000000143x2
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