
Activity #11:  Multiple Linear Regression 

1. Last time, we constructed a model in which prestige was predicted by income.  We could have also chosen to model 
prestige as a function of education or % women.  Some key results from 3 simple linear regression models are 
displayed below.  Interpret these results. 

2. The R2 values from those 3 models sum to 1.2479.  How is that possible?   

Scenario: Recall our prestige dataset:  http://www.bradthiessen.com/html5/data/prestige.csv 
 prestige: Pineo-Porter Prestige score (a survey) 
 education: average years of education for people in that occupation 
 income: average income (1971 Canadian dollars) for people in that occupation 
 percwomn: % of workers in that occupation who are female 
 type: 0=blue collar, 1=white collar, 2=professional/technical/managerial 

 Source:  Canada (1971).  Census of Canada.  Vol. 3, Part 6.  Statistics Canada, 19-21.

Correlations:
             | education  income   %women prestige
   ----------+------------------------------------
   education |   1.0000
      income |   0.5776   1.0000
      %women |   0.0619  -0.4411   1.0000
    prestige |   0.8502   0.7149  -0.1183   1.0000

Rprestige, income
2 = 0.5111

Model:  prestige = b0 + b1(income) 
Least-squares line:  y = 27.14 + 0.003x 
R2 = 0.5111 
RMSE = 12.09 
F = 104.54 (p < 0.00001)

Model:  prestige = b0 + b1(education) 
Least-squares line:  y = -10.7 + 5.36x 
R2 = 0.7228 
RMSE = 9.10 
F = 260.75 (p < 0.00001)

Model:  prestige = b0 + b1(% women) 
Least-squares line:  y = 48.7 – 0.06x 
R2 = 0.014 
RMSE = 17.17 
F = 1.42 (p = 0.2362)
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3. The F-test for our first model (in which prestige is a linear function of income) indicates income is a significant 
predictor of prestige (at least compared to a reduced model with no predictors). 

All our models thus far have employed a single independent variable (predictor).  We visualized this as a straight 
line through a 2-dimensional scatterplot of data.  Could we improve our prediction by adding another predictor 
variable?  Instead of fitting a 1-dimensional line to a 2-dimensional scatterplot, we’d try to fit a 2-dimensional plane 
to a 3-dimensional scatterplot. 

Let’s try this.  Let’s compare a reduced model with no predictors to a full model that attempts to predict prestige 
from both income and education.  Write out these models: 

Full model:  ______________________________________ Reduced model:  ____________________________________      

4. We know simple formulas to calculate the slope and y-intercept of the least-squares regression line, but how do we 
find the coefficients for the best-fitting plane?  Suppose we add another predictor.  How would we find the 
coefficients for the best-fitting hyperplane? 

Linear algebra isn’t a prerequisite for this course, so I won’t go into much detail, but we can use matrix algebra to 
find the coefficients for the best-fitting function.  Suppose we have n observations in our dataset, with p predictors in 
our full model.  Our full model, then, in matrix notation is: 

We could then show the least-squares solution to estimating the coefficients as:     . 

To learn more about this, see http://www.stat.purdue.edu/~jennings/stat514/stat512notes/topic3.pdf. 

5. I used R to compute the least-squares solutions for our full and reduced models.  Interpret the coefficients. 

From the coefficients, can we determine which variable (income or education) is the better predictor of prestige? 
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Reduced:  ŷ = Y = 46.833

Full:  ŷ = −6.8478 + 0.0014x1 + 4.1374x2

Full:  ŷ = −6.8478 + 0.0014 income( )+ 4.1374 education( )
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6. In the last activity, we used the omnibus F-test to compare the full and reduced models.  This test relied on knowing 
the R2 values for each model.  We know R2 = 0 for the reduced model (with no predictors), but how do we calculate 
R2 for the full model?  What does it mean to have a correlation among more than two variables? 

When we have two variables, X and Y, the correlation coefficient (R) can be interpreted as the correlation between 
the observed and predicted Y values.  With this definition, we can calculate R with multiple predictors –– we just 
need to calculate the correlation between our observed Y values and those predicted by the X variables.  The 
following table displays the predicted prestige scores based on our income and education predictors: 

A computer can calculate the multiple correlation between the observed and expected prestige scores to be 0.893.  
If we square this value, we get:              .  Interpret this value. 

7. Now let’s compare our models to see if the full model provides a significantly better prediction than the reduced 
model.  To do this, we can use the omnibus F-test or fill-in an ANOVA summary table.  Calculate the F-test: 

Now, let’s fill-in our ANOVA summary table: 

You can verify your calculations using the output pasted on the top of the next page.  What conclusion(s) can we 
make from this? 

4) When we conducted a simple linear regression analysis, we calculated R, the correlation between Y and X values.  I didn’t mention 
it at the time, but the value of R can also be interpreted as the correlation between observed and predicted Y values.  With this 
definition, we can calculate R with multiple predictors – we just need to calculate the correlation between the predicted and 
observed Y values.  The following table lists the observed and predict Y values (based on our regression equation).  

 
 
 
 
 
 
 
 
 
 
 
 
 

A computer calculates the correlation between the observed and predicted prestige scores to be:  
RY ,X1X2 = 0.8933 . 

 
 
 
5) If we square this correlation, we get R-squared = 0.798.  Interpret this value. 
 
 
 
 
 
 
 
6) We still don’t know if our full model is significantly better than our reduced model.  To determine this, we can once again create a 

summary table or use our omnibus F test.  Let’s start with the omnibus F test.  Calculate it and write your conclusion. 
 
 
 
 
 
 
 
 
 
 
 
 
 
7) We already know our conclusion, but let’s create the summary table.  The following table displays the formulas you will need. 
 

ANOVA (Summary of Calculations) 

Source Sum of Squares df Mean Square F Sig. 
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# Title Prestige Predicted 
(From regression line) Residual Squared 

residuals 
1 Physicians 87.2 100.4534 -13.253 175.653 

2 University Professors 84.6 63.29323 21.307 453.978 
… … … … … … 

101 Janitors 17.3 37.19886 -19.899 395.965 

102 Newsboys 14.8 29.80044 -15.000 225.013 

    SUM: 6038.85 

 

Fn!k full !1
k full !kreduced =

Rfull
2 ! Rreduced

2( ) / k full ! kreduced( )
1! R2( ) / N ! k full !1( ) =

SSreg / dfreg
SSE / dfE

Ry, x1, x2
= 0.798

F n−kfull−1
 kfull−kreduced =

Rfull
2 − Rreduced

2( ) / kfull − kreduced( )
1− Rfull

2( ) / n − kfull −1( ) =
MSreg

MSE
=

Source SS df MS MSR (F)

Regression 
(b1 , b2 | b0) k = 195.55

Error n - k -1 = p < 0.0001

Total n -1 = 
MStotal R2 = 0.798
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8. Let’s add one more predictor to our model.  Let’s see if the combination of income, education, and % women 
predict prestige better than a model with no predictors.  To do this, we would compare: 

  

Once again, make sure you can interpret those coefficients and the squared multiple correlation. 

Conduct a test to compare the full and reduced models. 

9. If we added another predictor to our model (any predictor), what would happen to the value of R2?  Because R2 will 
always increase when extra predictors are added (even if those predictors are almost completely unrelated to the 
dependent variable), it might be better to use another statistic to evaluate the fit of our model.   

We can define an adjusted R-squared that will only increase only if the additional predictor improves the prediction 
more than would be expected by chance: 

For this most recent example,  

Based on this adjusted R-squared value, what can we conclude about the predictor % women? 

8) Complete the summary table.  Check to ensure your F statistic is the same as what you got from the omnibus F test.  Also, check 
your SSE against the table at the top of the previous page.  Finally, check your values against the Stata output pasted below. 

 
ANOVA (Calculated from our example data) 

Source Sum of Squares df Mean Square F Sig. 

Regression      

Error    
 

Total    
 
 
 

      Source |       SS       df       MS              Number of obs =     102 
-------------+------------------------------           F(  2,    99) =  195.55 
       Model |  23856.5752     2  11928.2876           Prob > F      =  0.0000 
    Residual |  6038.85086    99  60.9984935           R-squared     =  0.7980 
-------------+------------------------------           Adj R-squared =  0.7939 
       Total |  29895.4261   101  295.994318           Root MSE      =  7.8102 
 
------------------------------------------------------------------------------ 
    prestige |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      income |   .0013612   .0002242     6.07   0.000     .0009163    .0018061 
   education |   4.137444    .348912    11.86   0.000     3.445127    4.829762 
       _cons |  -6.847778   3.218977    -2.13   0.036    -13.23493   -.4606292 
------------------------------------------------------------------------------ 

 
 
 
9) Let’s go one step further.  Let’s see if the combination of income, education, and %women significantly predict prestige better than 

a model with no predictors.  To do this, we would compare the following models: 
 

Reduced Model:   Ŷ = !0   vs.   Full Model:  Ŷ = !0 + !1X1 + !2X2 + !3X3  
 
 
 

Stata computes the following coefficients:  Ŷ = !6.794 + 0.001X1 + 4.187X2 ! 0.009X3 . 
 
Interpret the coefficients. 

 
 
 
 
 
 
 
 
 
10) Stata also computes the correlation between the observed prestige scores and the prestige predicted by this equation.  This 

correlation, when squared, was found to be:  RY123
2 = 0.7982 .  Interpret this value and then conduct a test to see if the full model 

is significantly better than the reduced model. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Reduced:  ŷ = b0 = Y = 46.833

Full:  ŷ = b0 + b1x1 + b2x2 + b3x3

Full:  ŷ = −6.794 + 0.0013 income( )+ 4.1866 education( )− 0.0089(%women)

Ry, x1, x2 , x3

2 = 0.7982

Radjusted
2 = 1− 1− R2( ) n −1

n − k −1
= R2 − 1− R2( ) k

n − k −1
= 1− MSE

MSTotal

Radjusted
2 = R2 − 1− R2( ) k

n − k −1
= 0.7982 − 1− 0.7982( ) 3

102 − 3−1
= 0.798
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10. Let’s look one last time at our full model with 3 predictor variables: 

Explain, again, why we can’t simply compare the magnitude of the coefficients to determine which is the most 
potent predictor of prestige? 

If we really want to compare coefficients in our model, we could calculate standardized beta coefficients.  One way 
to do this would be to convert all our variables (prestige, income, education, %women) to z-scores before 
conducting the regression.  We could also run a regression with the (untransformed) variables and then convert the 
coefficients using the following transformation: 

As an example, suppose we want to convert the coefficient of education to a standardized beta coefficient: 

Converting all the coefficients yields the following.  Interpret these coefficients. 

Explain why we still must be extremely cautious in comparing these standardized coefficients. 

11. To the right, I’ve plotted some graphs of the residuals.  
From these graphs, what can we conclude about the 
assumptions necessary to conduct a linear regression 
analysis? 

Full:  ŷ = −6.794 + 0.0013 income( )+ 4.1866 education( )− 0.0089(%women)

βk = bk
sxk
sy

β2 = b2
sx2
s2

= 4.1866 2.7284
17.204

= 0.66396

ŷ = 0.32418 zincome( )+ 0.66396 zeducation( )− 0.01642 z%women( )
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12. Look at the coefficients for our models with two and three predictors: 

Notice that the coefficients didn’t change significantly when we added a new predictor.  That’s a good sign that we 
don’t have a multicollinearity problem. 

Multicollinearity is when two or more predictors in our model are highly correlated with each other (meaning that 
one can be linearly predicted from the others).  To read more about multicollinearity, including how to detect and 
deal with it, visit:  http://en.wikipedia.org/wiki/Multicollinearity 
   

13. Thus far, we’ve only analyzed the total contribution of several independent variables.  In other words, we’ve always 
compared our full models to a reduced model with no predictors.  Suppose, instead, we are interested in finding a 
model that adequately predicts prestige using the fewest variables possible. 

In this example, we found income was a significant predictor of prestige.  In fact, we found                             led to an 
omnibus F-statistic of 104.54. 

We also found that the combination of income and education provided a significantly better prediction of prestige 
than a model with no predictors.  For this model, we found               . 

Our question, now, is:  Did adding education as a predictor significantly improve our prediction? 

To answer this, let’s write out the full and reduced models we’d like to compare: 

Full model:  ______________________________________ Reduced model:  ____________________________________      

14. To compare these models, we can use an omnibus F-test or fill-in the ANOVA summary table.  Verify these 
calculations. 

ŷ = −6.848 + 0.0014 income( )+ 4.1374 education( )
ŷ = −6.794 + 0.0013 income( )+ 4.1866 education( )− 0.0089 %women( )

RY,1
2 = 0.5111

RY,12
2 = 0.7980

Source SS df MS MSR (F)

income & education 23856.55 2 11928.3 195.55

income 15276.56 1 15276.6 104.54

education | income 8579.99 1 8580 140.7

Error 6038.876 99 61

Total 29895.426 101 MStotal
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15. Use the omnibus F-test to verify that F-statistic of 140.7. 

16. Calculate and interpret  

17. Before we move on to another example, let’s attempt to answer one final question.  So far, we’ve shown: 
 • Income is a significant predictor of prestige (compared to a model with no predictors) 
 • The combination of income and education are significant predictors of prestige (compared to a null model)  
 • The combination of income, education, and %women are significant predictors of prestige (vs. null model) 
 • Education significantly improves the prediction of prestige over a model with only income as the predictor 

Our final question is:  Does %women significantly improve our prediction over a model with income and education? 
 or                                        
 Should we add %women to predict prestige if we’re already using income and education?                                        

Write out the full and reduced models of interest. 

Full model:  ______________________________________ Reduced model:  ____________________________________      

Using R, I calculated the following multiple correlation coefficients: 

Use the omnibus F-test to answer our question: 

RY2 | 1
2

RY1
2 = 0.511       RY12

2 = 0.798       RY123
2 = 0.7982

RY2
2 = 0.723       RY13

2 = 0.559
RY3

2 = 0.014       RY23
2 = 0.752
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18. Just to review a concept we learned last time, we could use our full model (with all three predictors) to predict the 
prestige of a job with:  income = 5000, education = 10, %women = 40.  Using R, I came up with a 95% confidence 
interval and a 95% prediction interval for this prediction.  Interpret both intervals: 

 Predicted prestige = 42.74 
  

 Confidence interval:  (39.78, 45.70) 

 Prediction interval:  (27.27, 58.21) 

19. The following figure and table attempt to visualize the contribution of two predictors on a dependent variable. 

20. Let’s turn to a simple dataset to practice our multiple regression 
tests and to investigate the concept of interaction.  The htwt dataset 
lists 4 measurements for 1000 subjects: 

 y = weight = weight of each subject at age 16 (in kg) 
 x1 = height = height of each subject at age 16 (in cm) 
 x2 = gender = female or male 
 x3 = mal = malaise score for each subject at age 22 

 variable mean std. dev                                     
 weight 57.17209 9.656277                                
 height 166.163 8.025138                                  
 gender (50.9% female, 49.1% male)                         
 mal 2.591 2.842851                                            

The following display attempts to visualize the contribution of two independent variables to the prediction of one dependent variable. 
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21. Suppose we’re interested in modeling an individual’s weight as a function of their height.  A computer would find: 

We could use the omnibus F-test to determine if height is a significant predictor of weight, but I’m interested in a 
different question:  Is this prediction the same for males and females? 
 
Before we address that question, let’s see how well the combination of height and gender predict weight.  To do 
this, we’d compare: 
 

A computer found the following least-squares coefficients: 

Interpret the coefficient for the gender variable (female = 0, male = 1).  What does -1.3439 represent? 

 
22. Interpret the rest of the output from running this regression analysis:   

 

23. I also had the computer calculate all possible 
multiple correlations.  Interpret these values. 

Full:  ŷ = b0 + b1 height( )+ b2 female( )
Reduced:  ŷ = b0

Full:  ŷ = −53.788 + 0.67175 height( )−1.3439 male( )
Reduced:  ŷ = 57.17209

Analysis of Variance Table

          Df Sum Sq Mean Sq  F value  Pr(>F)
hght+gndr   2  25487 12743.5 187.7700 < .0001
height      1  25173 25172.9 370.9122 < .0001
gender      1    314   313.8   4.6231 0.03178  
Residuals 997  67664    67.9                     

RMSE = 8.24

R-squared = 0.2736
Adjusted R-squared = 0.2721

RY1
2 = 0.2702       RY12

2 = 0.2736       RY123
2 = 0.2741

RY2
2 = 0.0569       RY13

2 = 0.2712
RY3

2 = 0.0029       RY23
2 = 0.0570

ŷ = −46.764 + 0.62551 height( )
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24. Suppose we want to know if gender explains variation in weight beyond what height already explains.  In other 
words, suppose we want to know if gender significantly improves our prediction of weight, after controlling for 
height.  Write out the full and reduced models, run an omnibus F-test, and write out your conclusions.   

25. Now let’s go back to our question:  Does height predict weight the same way for males and females? 

When we choose a model such as      
             ,  
we’re indicating that weight differs by a constant 
amount for males and females.  No matter what 
height we substitute into this model, males and 
females with that same height will differ by 1.3439 kg 
(see the parallel regression lines to the right) 

If we want to model an interaction between height 
and gender, we need to put that into our model.  We 
could do this in one of two ways: 

a) Split our data into two sets (one dataset for males 
and another for females).  We could then run a 
separate regression analysis for each dataset. 

b) Incorporate an interaction (product) term into our 
model and run a single regression analysis. 

26. Using option (a), I split the data into two groups and conducted two regression analyses.  I found the following 
coefficients: 

Using option (b), I input the following model into R: 

and obtained these coefficients: 
 

ŷ = −53.788 + 0.67175 height( )−1.3439 male( )

   Model |    25486.61     2   12743.305               Prob > F      =  0.0000
Residual |  67663.8236   997  67.8674259               R-squared     =  0.2736
---------+------------------------------               Adj R-squared =  0.2721
   Total |  93150.4336   999  93.2436773               Root MSE      =  8.2382

------------------------------------------------------------------------------
  weight |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval]
---------+--------------------------------------------------------------------
  female |   1.343864   .6250126      2.150   0.032       .1173726    2.570355
  height |   .6717493   .0389541     17.245   0.000       .5953079    .7481908
   _cons |  -55.13182   6.658765     -8.280   0.000      -68.19863   -42.06502
------------------------------------------------------------------------------

predict p1

sort female height

graph twoway scatter weight p1 height, msym(oh i) con(. L) jitter(1) legend(off)

regress weight female height fxh

  Source |       SS       df       MS                  Number of obs =    1000
---------+------------------------------               F(  3,   996) =  128.78
   Model |  26034.4351     3  8678.14505               Prob > F      =  0.0000
Residual |  67115.9985   996  67.3855406               R-squared     =  0.2795
---------+------------------------------               Adj R-squared =  0.2773
   Total |  93150.4336   999  93.2436773               Root MSE      =  8.2089

------------------------------------------------------------------------------
  weight |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval]
---------+--------------------------------------------------------------------
  female |   38.26321   12.96338      2.952   0.003       12.82455    63.70188
  height |   .7706638    .052059     14.804   0.000       .6685058    .8728217
     fxh |  -.2227448   .0781214     -2.851   0.004      -.3760463   -.0694434
   _cons |  -72.01376   8.892743     -8.098   0.000      -89.46442   -54.56309
------------------------------------------------------------------------------

twoway (scatter weight height, msym(Oh) jitter(2))(lfit weight height if ~female) ///
(lfit weight height if female), legend(off)

Males:  ŷ = −72.01376 + 0.77066 height( )
Females:  ŷ = −33.75055 + 0.54792 height( )

Full model:  ŷ = b0 + b1 height( )+ b2 female( )+ b12 height x female( )

R2 = 0.2795,  Radjusted
2 = 0.2773

ŷ = −33.75 + 0.5479 height( )− 38.2632 male( )+ 0.2227 height x male( )
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27. The plot below displays how this interaction term allows the slopes to differ for males and females.  To interpret 
this interaction term (and its coefficient), we can do some manual arithmetic: 

For males: 

For females: 

Notice these coefficients (from the model with the 
interaction effect)  are the same as what we got from 
the two separate regression analyses: 

With this full model (including the interaction term), we 
could test the significance of each coefficient: 

28. The p-value for the interaction term (p = 0.004445) indicates the interaction term improves our prediction.  We 
could also use the omnibus F-test to determine if this interaction term significantly improves our prediction 
(beyond a model without the interaction term).  Below, I’ve conducted the omnibus F-test and then pasted output 
from R that compared the full model (with interaction) to a reduced model without interaction.  Interpret. 

Notice the value of our F-statistic is equal to the t-statistic (from question #27) squared 

ŷ = −33.75 + 0.5479 height( )− 38.2632 male( )+ 0.2227 height x male( )
ŷ = −33.75 + 0.5479 height( )− 38.2632 1( )+ 0.2227 height x 1( )
ŷ = −72.0132 + 0.7706 height( )

ŷ = −33.75 + 0.5479 height( )− 38.2632 male( )+ 0.2227 height x male( )
ŷ = −33.75 + 0.5479 height( )− 38.2632 0( )+ 0.2227 height x 0( )
ŷ = −33.75 + 0.5479 height( )

Males:  ŷ = −72.01376 + 0.77066 height( )
Females:  ŷ = −33.75055 + 0.54792 height( )

Coefficients:
                   Estimate Std. Error t value Pr(>|t|)    
(Intercept)       -33.75055    9.43230  -3.578 0.000363
height              0.54792    0.05825   9.407  < 2e-16
gendermale        -38.26321   12.96338  -2.952 0.003235 
height:gendermale   0.22274    0.07812   2.851 0.004445

R-squared = 0.2795 Adjusted R-squared = 0.2773
RMSE = 8.209

F996
 1 =

.2795 − .2736( ) / 3− 2( )
1− .2795( ) / 1000 − 3−1( ) = 8.13  p = 0.00445( )

Analysis of Variance Table

Model 1: weight ~ height + gender
Model 2: weight ~ height * gender
  Res.Df   RSS Df Sum of Sq      F   Pr(>F)   
1    997 67664                                
2    996 67116  1    547.83 8.1297 0.004445
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29. We’re going to investigate several questions regarding St. Ambrose first semester GPAs: 
 a) How well do ACT scores predict first-semester GPAs at St. Ambrose? 
 b) Do ACT add to our prediction of SAU GPAs beyond what high school GPAs predict? 
 c) Do student athletes have higher or lower SAU GPAs? 
 d) Do the self-reported hours studying per week predict SAU GPAs beyond ACT and high school data? 
 e) Is there an interaction between gender and athletics? 

Before we address these questions, though, let’s see how good of a prediction we can get if we use all our 
predictor variables.  One thing to notice is the strong correlation (r = 0.903) between HS GPA and HS Rank.  If we 
include both predictors, we’ll have a multicollinearity problem.  I’m only going to include the HS GPA predictor. 

On the top of the next page, I fit a full model with all our predictor variables (no interaction terms) and compared it 
to a reduced model with no predictors.  Interpret this output. 

Scenario: Let’s see how well we can predict the fall semester GPAs of St. Ambrose freshmen based on: 

 • HS GPA = high school GPA    • HS %ile rank = high school percentile rank 
 • Athlete = student athlete?    • ACT score = ACT Composite score 
 • Hours studying = hours studying per week  • Gender = male or female 

Data:  http://www.bradthiessen.com/html5/data/gpadata.csv 
Note:  I only kept records with no missing data.  How could we handle missing data?

Student
y  

1st sem. GPA
x1 

HS GPA
x2 

HS %ile rank
x3 

Athlete
x4 

ACT score
x5 

Hours studying
x6 

Gender
1 2.87 2.82 43 no 24 5 male
2 3.16 3.49 76 no 32 7 male
… … … … … … … …

255 1.69 3.26 70 yes 21 4 male
Mean 2.65 3.275 63.27 34.9% 22.96 10.62 56.5%

Std. Dev 0.75 0.52 24.48 athletes 3.66 8.90 female
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Full model: Coefficient 95% Confidence interval          
(intercept) -1.043, -0.054                         

R2 = 0.5184 hsGPA +0.525, +0.852                    
adj. R2 = 0.5088 Not athlete -0.178, +0.120         
RMSE = 0.5248 ACTscore +0.020, +0.066               
F = 53.612 hoursSTUDY +0.002, +0.017                
p < 2.2e-16 Male -0.422, -0.128                     

Which predictors have significant coefficients? 

30. How much better of a prediction could we get if we include all the interaction terms, too?  To check this, I fit a 
model with all the interaction terms and obtained an R-squared value of 0.55.  What does this tell us about those 
interaction terms?  Below, I’ve pasted output from an F-test comparing the model with interaction terms to a model 
with no interaction terms.  Interpret. 

Analysis of Variance Table
Model 1: sauGPA ~ hsGPA + athlete + ACTscore + hoursSTUDY + gender
Model 2: sauGPA ~ hsGPA * athlete * ACTscore * hoursSTUDY * gender
  Res.Df    RSS Df Sum of Sq      F Pr(>F)
1    249 68.583                           
2    223 64.091 26     4.492 0.6011 0.9384

31. Looking, once again, at the output at the top of this page, it looks like the athlete variable does not help us predict 
first-semester GPAs.  Let’s eliminate that variable, estimate the coefficients, and compare it to the full model that 
did have the athlete variable. 

No athlete model: Coefficient 95% Confidence interval    
R2 = 0.5181 (intercept) -1.052, -0.080              
adj. R2 = 0.5104 hsGPA +0.526, +0.852               
RMSE = 0.5239 ACTscore +0.020, +0.065               
F = 67.21 hoursSTUDY +0.002, +0.017                 
p < 2.2e-16 Male -0.399, -0.129                     

Analysis of Variance Table
Model 1: sauGPA ~ hsGPA + ACTscore + hoursSTUDY + gender
Model 2: sauGPA ~ hsGPA + athlete + ACTscore + hoursSTUDY + gender
  Res.Df    RSS Df Sum of Sq      F Pr(>F)
1    250 68.624                           
2    249 68.583  1  0.041239 0.1497 0.6991

Eliminating the athlete variable didn’t have much of an impact on our R-squared and RMSE values.  Also, notice 
that now all our predictors are now significant.  The F-test at the bottom says the model without the athlete variable 
does not differ significantly from the model with the athlete variable.  All of this indicates it’s safe to eliminate the 
athlete variable from our prediction. 
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32. We could continue this backwards-selection process by eliminating another variable and seeing how much of an 
impact it has on the predictive potency of our model.  Let’s do this by eliminating the hours studying variable: 

No hours model: Coefficient 95% Confidence interval      
R2 = 0.5072 (intercept) -1.128, -0.156              
adj. R2 = 0.5014 hsGPA +0.541, +0.869               
RMSE = 0.5288 ACTscore +0.026, +0.070               
F = 86.13 Male -0.411, -0.139                       
p < 2.2e-16         

Model 1: sauGPA ~ hsGPA + ACTscore + gender
Model 2: sauGPA ~ hsGPA + ACTscore + hoursSTUDY + gender
  Res.Df    RSS Df Sum of Sq      F  Pr(>F)  
1    251 70.175                              
2    250 68.624  1    1.5516 5.6525 0.01818 *

Eliminating the hours studying variable did have an impact on our predictive potency.  While our R-squared 
dropped just slightly (from 0.5181 to 0.5072), that was a significant drop.  If we don’t care so much about a 1% 
drop, we could decide to keep the variable in the model.  Otherwise, we could choose to eliminate it. 

Let’s say that we decide this model is our “best” model.  We could then use our model to make predictions: 

We know how well this model fits the data we used to estimate the coefficients, but how accurate would this model 
be for new data? 

The data we used were from first-year students in 2013.  Suppose I gathered high school GPAs, ACT scores, and 
gender for this year’s first-year students.  I could then predict the Fall GPAs of these students using our model. 

On the 2013 data, our model had an R-squared value of 0.5072.  If we fit our model to this year’s data, would you 
expect the R-squared value to be greater than, less than, or equal to 0.5072?  Explain. 

33. What could we do to ensure we don’t overfit the data 
we use to estimate our model? 

ŷ = −0.6416 + 0.7051 hsGPA( )+ 0.0480 ACTscore( )− 0.2753 male( )

Bias-Variance Tradeoff 

High Bias - Low Variance Low Bias - High Variance 

�overfitting� - modeling the 
random component 
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34. Let’s quickly investigate some other questions we can address with our data.  Determine what models we could fit 
to address each question.  Then, we can use our data in-class to attempt to answer each question. 

 a) How well do ACT scores predict first-semester GPAs at St. Ambrose? 

Full model:  ______________________________________ Reduced model:  ____________________________________      

How could we attempt to answer the question? 

 b) Do ACT add to our prediction of SAU GPAs beyond what high school GPAs predict? 

Full model:  ______________________________________ Reduced model:  ____________________________________      

How could we attempt to answer the question? 

 c) Do the self-reported hours studying per week predict SAU GPAs beyond ACT and high school GPA? 

Full model:  ______________________________________ Reduced model:  ____________________________________      

How could we attempt to answer the question? 
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35. The final question is: Do student athletes have higher or lower SAU GPAs? 

To address this question, we could conduct a t-test (or randomization-based test of the two groups): 

Two Sample t-test
data:  sauGPA by athlete

sample estimates: athlete mean = 2.501573 not athlete mean = 2.729

alternative hypothesis: true difference in means is not equal to 0
t = -2.3323, df = 253, p-value = 0.02047

95 percent confidence interval:  -0.41952830 -0.03539793

From this, what would we conclude? 

36. We could also address this question by comparing: 

How does this compare to the t-test? 

37. As we’ll soon see, the t-test (and ANOVA) are simply special cases of linear regression.  Regression allows us, 
though, to develop and test more complex models.  For example, we have already concluded that athletes have 
lower GPAs than non-athletes.  Would this difference hold if we controlled for ACT scores?  In other words, if we 
have two students with the same ACT score, does being an athlete have an association with a lower GPA.  To test 
this, we could compare: 

What conclusions can we make?  Do athletes have lower first-semester GPAs? 

Full:  ŷ = b0 + b1 athlete( )
Reduced:  ŷ = b0

F =
0.02105 − 0( ) / 1− 0( )

1− 0.02105( ) / 255 −1−1( ) = 5.44  p = 0.02047( )

Full:  ŷ = b0 + b1 ACTscore( )+ b2 athlete( )
Reduced:  ŷ = b0 + b1 ACTscore( )

F =
0.2955 − 0.2875( ) / 2 −1( )
1− 0.2955( ) / 255 − 2 −1( ) = 2.8587  p = 0.09212( )
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38. Let’s revisit the questions about choosing the best model and ensuring our model doesn’t overfit our data. 

These are extremely important questions in predictive modeling.  Here’s a quick overview of some approaches: 

Cross-validation:  Read more about this method at http://www.autonlab.org/tutorials/overfit10.pdf 
 • Randomly divide the data into k pieces (let’s say k = 10) 
 • Use k-1 of those pieces (90% of the data; called the training set) to estimate the model coefficients 
 • Compute prediction error on the remaining piece (10% of the data; called the test set) 
 • Do this for each piece (10% of the data) 
 • Average the k (10) prediction error estimates.  This gives us the predictive accuracy of the model. 
 • Repeat this process for other competing models.  Whichever gives the smallest mean error is the “best” 
 • Estimate coefficients for that “best” model using all of the data 

Let’s see this process work on the small dataset pictured to the left. 
We randomly split the data into 3 pieces (red, blue, and green dots) 

Below (left): We fit a model to the green and blue dots   
 and measure error using red dots                        

Below (middle): We fit a model to the red and blue dots   
 and measure error using green dots                               

Below (right): We fit a model to the red and green dots   
 and measure error using blue dots                            

We then take the average of those mean square errors. 
We’d repeat this process with different models (other predictor variables) and 
choose the model that produces the smallest average mean square error. 

Average cross-validated mean square error: Model            
 0.281 GPA = f(hsGPA + athlete + ACTscore + hoursSTUDY + gender)                                                                               
 0.280 GPA = f(hsGPA +               + ACTscore + hoursSTUDY + gender)                                                                               
 0.283 GPA = f(hsGPA +               + ACTscore +                         + gender)                                                                               
 0.297 GPA = f(hsGPA +               + ACTscore                                              )                                                                               
 0.311 GPA = f(hsGPA +                                                                                  )                                                                               
 0.337 GPA = f(full model including all possible interaction terms)                                                                               

From this process (and the 6 models displayed above), what model would we choose as “best”? 
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y

Randomly break the dataset into k 
partitions (in our example we’ll have k=3 
partitions colored Red Green and Blue)

For the red partition: Train on all the 
points not in the red partition. Find 
the test-set sum of errors on the red 
points.

For the green partition: Train on all the 
points not in the green partition. 
Find the test-set sum of errors on 
the green points.

For the blue partition: Train on all the 
points not in the blue partition. Find 
the test-set sum of errors on the 
blue points.

Then report the mean error

Linear Regression 
MSE3FOLD=2.05
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Best subsets regression:  Read more at https://onlinecourses.science.psu.edu/stat501/node/89 
 • With 5 predictor variables, how many different models could we fit from our data (not counting interactions)?   
 • Why not try to fit all of these models? 
 • Fit all the models with 1 predictor.  Determine which model is best (possibly using R-squared values) 
 • Identify the best 2-, 3-, 4-, and 5-predictor models. 
 • Compare these best-fitting models and choose one 

Above, I’ve printed a display of the R-squared values I obtained from all possible subsets. 
The best one-predictor model includes high school GPA (hG) 
The best two-predictor model includes high school GPA and ACT scores (hg + A) 
It looks like there’s not much difference between the 3- and 4-predictor models, so I might choose the simpler 
model. 

Stepwise regression - Possibly using AIC (Akaike info. criterion), F-tests, or BIC (Bayesian information criterion) 
 Read more, including criticisms of this approach, at http://en.wikipedia.org/wiki/Stepwise_regression 
 • Add or subtract a predictor from your model, 
 • Test to see if that addition (or deletion) of a predictor made the prediction significantly better (or worse) 

Below, I’ve pasted the final result from a stepwise regression using AIC. 

Call:
lm(formula = sauGPA ~ hsGPA + ACTscore + hoursSTUDY + gender, 
    data = gpa)

Coefficients:
(Intercept)        hsGPA     ACTscore   hoursSTUDY   gendermale  
    -0.5662       0.6889       0.0425       0.0093      -0.2640  
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Ridge regression:  Read more at:  http://en.wikipedia.org/wiki/Tikhonov_regularization 
 • With cross-validation, best-subsets, and stepwise methods, our model selection is a discrete process: 
  individual predictors are either in or out.  
 • These methods can have high variance.  A different set of data could lead to a completely different model. 
 • Ridge regression allows a predictor to be partly included in a model.  It shrinks the size of the coefficient. 
 • The benefits of ridge regression are most apparent when we have a multicollinearity problem. 

Below, I’ve pasted output using ridge regression.  I used a model that included both HS GPA and HS Rank to 
introduce collinearity.  Notice the smaller magnitude of the coefficients under the ridge regression method.  
Lambda was selected to be 6.43 to estimate the coefficients 

Linear Ridge                      
Regression Regression                  

Predictor Coefficient Coefficient        
(intercept) -0.6688 -0.4884          

hsGPA +0.7514 +0.6622                
hsRANK -0.0016 +0.0002               

not athlete -0.0316 -0.0243          
ACTscore +0.0436 +0.0432             

hoursSTUDY +0.0093 +0.0093           
male -0.2808 -0.2702                 

The plot shows the shrinkage of the coefficients as we increased lambda.  Note that we wouldn’t want to use the 
ridge regression coefficients (because they have bias).  We use ridge regression to determine if our coefficient 
estimates are stable as we increase bias.  If the estimates remain stable (like most in the plot displayed above), 
we have evidence that multicollinearity is not a problem. 

Lasso (least absolute shrinkage and selection operator):  http://statweb.stanford.edu/~tibs/lasso/simple.html 
 • Ridge regression shrinks the magnitude of the coefficients, but it does not allow coefficients to become zero. 
 • With the Lasso, coefficients can drop to zero (so we can use this process to select variables in our model).  

Note:  Our course website contains other examples of multiple regression we can review together.  The datasets 
associated with these examples can be found at:   

 • csat:  http://www.bradthiessen.com/html5/data/csat.csv 
 • teenage gambling:  http://www.bradthiessen.com/html5/data/gambling.csv 
 • race/income:  http://www.bradthiessen.com/html5/data/income.csv 
 • state cancer rates:  http://www.bradthiessen.com/html5/data/cancer.csv 
 • smoking/birthweight:  http://www.bradthiessen.com/html5/data/birthweight.csv
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