Assignment #3: ANOVA

1. An ANOVA was conducted to compare multiple group means. Fill-in the 6 blanks in the following table:

Source of variation	SS	df	MS	MSR (F)
Treatments (among groups)		3	158.96	
Error (within groups)		32	62.81	(blank)
Total variation			(blank)	η² =

Based on the above ANOVA summary table:

- a. There were _____ groups (treatments) in this study.
- b. There were ______ total observations (subjects) in this study.

c. The total variance of all observations in this study was equal to _____

2. An ANOVA was conducted to compare multiple group means. Fill-in the 6 blanks in the following table:

Source of variation	SS	df	MS	MSR (F)
Treatments (among groups)		7		5.01
Error (within groups)			3.62	(blank)
Total variation		29	(blank)	η² =

Based on the above ANOVA summary table:

- a. There were _____ groups (treatments) in this study.
- b. There were ______ total observations (subjects) in this study.
- c. The total variance of all observations in this study was equal to _____

Scenario:	A sample o middle, and (grams per	f 20 different types of cere d highest shelves). A summ serving) of the cereals is g	als was taker hary of the su iven below.	n from each of thr ugar content (grai	ee grocery store ms per serving) a	shelves (the lowest, and dietary fiber
			Suga	ar content (g per s	serving)	
			n	\overline{X}	S	
		Lowest shelf	n = 20	4.80	2.138	
		Middle shelf	n = 20	9.85	1.985	
		Highest shelf	n = 20	6.10	1.865	
		All shelves combined	N = 60	M = 6.9167	s = 2.9194	

3. In order to conduct an ANOVA, we need to make some assumptions: independence, normality, & equal variances. Determine whether the equal variance assumption is satisfied for this study by conducting an Fmax test.

For the <u>sugar</u> study: Fmax =		The equal variance assumption	IS	IS NOT	satisfied.
-------------------------------------	--	-------------------------------	----	--------	------------

4. We want to determine if the (population) mean sugar levels differ among the 3 shelves. What are the hypotheses?

5. For the sugar data, fill-in the following ANOVA summary table by calculating SS, df, MS, MSR, and eta-squared. Just this once, try to calculate all of these things by hand (using a calculator; not a statistical program or applet).

Source of variation	SS	df	MS	MSR (F)
Shelves				
Error				(blank)
Total			MS_{total}	η² =

Once you have the table completed, go ahead and check your work with <u>http://danielsoper.com/statcalc3/calc.aspx?id=43</u>

6. Calculate MS_{total} for the <u>sugar</u> data (use the ANOVA summary table you just created). The MS_{total} was actually given to you in the scenario. What does MS_{total} represent?

MS_{total} represents: _____

 If the null hypothesis were true, how unlikely were we to get the sugar data that we observed in this study? Use an F-distribution table or calculator to estimate the p-value for your MSR.

Calculator: <u>http://lock5stat.com/statkey/theoretical_distribution/theoretical_distribution.html#F</u> F-table: <u>http://bradthiessen.com/html5/stats/m301/ftable.pdf</u>

Identify the degrees-of-freedom for your F-statistic (MSR): Numerator df = _____ Denominator df = _____

Approximate p-value: $P(F \ge MSR) =$ _____

8. From this p-value write out any conclusion(s) you can make for this sugar study:

Conclusions: _____

9. Look at the eta-squared you calculated in the ANOVA summary table. Interpret this eta-squared with regards to this study.

Interpretation: _____

Scenario: Suppose we're interested in testing the critical thinking skills of seniors at St. Ambrose. We randomly sample seniors majoring in each of the following 6 groups of programs:

- STEM majors (e.g., math, chemistry, engineering, computer science)
- Health science majors (e.g., biology, nursing, exercise science)
- Social science majors (e.g., psychology, sociology, criminal justice, political science)
- Humanities majors (e.g., English, philosophy, theology, history)
- Creative arts majors
- Education majors

We then administer a test of critical thinking to these students.

- 10. We want to compare the means of 6 different groups. To do this, we could decide to conduct a series of t-tests to compare all possible pairs of group means. Answer the following:
 - a. How many t-tests would we need to conduct to compare all possible pairs of our 6 group means?_____
 - b. Suppose we set a = 0.05 for each of those t-tests. What would be the probability of making at least one a-error across all our t-tests?

Answer: _____

- c. Suppose you conduct an ANOVA to compare the 6 group means. What would happen to your F-statistic (MSR) and the p-value under each of these scenarios:
 - i. If we sample a larger number of students in each group, the <u>F-statistic</u> will **INCREASE DECREASE**
 - ii. If we sample a <u>larger number of students</u> in each group, the <u>p-value</u> will **INCREASE DECREASE**
 - iii. If the population (group) means remain the same but the group standard deviations all increase, the F-statistic will: INCREASE DECREASE

- 11. Datasets A and B are displayed above. Use that pair of plots to answer the following:
 - a. If you conducted an ANOVA for each dataset, which one would have the larger MSA (between groups)?

Circle your answer: DATASET A DATASET B They are equal Unable to determine

b. If you conducted an ANOVA for each, which dataset would have the larger MSE (within groups)?

Circle your answer: DATASET A DATASET B

They are equal Unable to determine

c. Based on the MSR (F-statistic) you would calculate for each, which would yield the smaller p-value?

Circle your answer: DATASET A DATASET B	They are equal	Unable to determine
---	----------------	---------------------

Scenario: Does the amount of time doctors spend with patients depend on whether the patient is obese?

A 2001 study examined physicians' behavioral intentions as well as their expressed attitudes towards average-weight and obese patients. 71 primary care physicians in Houston participated in this study. The doctors were sent a packet containing a medical chart similar to the one they view upon seeing a patient. This chart portrayed a patient who was displaying symptoms of a migraine headache but was otherwise healthy. The weight of the patient was manipulated so that:

- 33 doctors received a chart from a patient of average weight (body mass index = 23)
- 38 doctors received a chart from an obese patient (body mass index = 36)

The doctors were instructed to examine the charts and then asked, among other questions, how much time they believed they would spend with the patient. Here's a summary of that data:

12. If we were to conduct an independent samples t-test (assuming the population variances are equal), we would calculate an observed t-statistic of:

$$t_{33+38-2} = \frac{31.36364 - 24.73684}{\sqrt{\frac{1}{33} + \frac{1}{38}}\sqrt{\frac{(33-1)(9.864134)^2 + (38-1)(9.652571)^2}{33+38-2}}} = \frac{6.6268}{(0.23795)(9.75125)} = 2.856$$

If we were running a two-tailed test (i.e., our alternative hypothesis was $\mu_{average} = \mu_{obese}$), we would estimate the p-value as p= 0.0028 x 2 = 0.0057 (as displayed in the t-distribution to the right)

If we conducted an ANOVA on this same data (to compare the two group means), what would we calculate for our F-statistic (our MSR)? What would our p-value be?

If you don't know, you could always type the sample sizes, means, calculator: <u>http://danielsoper.com/statcalc3/calc.aspx?id=43</u>

The F-statistic (MSR) would equal: _____ (look at how that compares to the t-statistic calculated above).

The p-value would be: _____.