
Assignment #12:  Advanced Regression Topics 

1. Obviously, it doesn’t look like we have a linear trend here, but we can find the best-fitting linear model: 

The F-statistic indicates this linear model is better than a model with no predictors and the R-squared value shows 
the fit isn’t too bad. 

Suppose we plot our residuals from this linear model versus the fitted values.  What would that graph look like? 
One of the following 3 plots is the actual residual plot.  The other two are from simulated datasets.  Circle the plot 
that was generated from the linear model displayed above. 

Scenario: 1,618 undergraduate students were enrolled at St. Ambrose during 
the Fall semester of 1977.  By 2013, that number increased to 2,743.  
The plot to the right shows the trend in enrollment over time: 

Source:  2013 StatPak 
Data:  http://www.bradthiessen.com/html5/data/sauenroll.csv 

Model:  # of students = b0 + b1(year) 
Least-squares line: y = -71557.5 – 36.932x  
R2 = 0.7556 
RMSE = 230.6 
F = 108.2 (p = 2.998e-12)

http://www.bradthiessen.com/html5/data/sauenroll.csv


2. Below, I’ve sketch lowess curves with bandwidth (spans) of 0.1 (left), 0.5 (middle), and 1.0 (right). 

The curve on the left fits the data perfectly (R-squared = 1.0).  Explain why we would not want to use this to model 
enrollment over time. 

 ____________________________________________________________________________________________________ 

 ____________________________________________________________________________________________________ 

What bandwidth (span) would you choose to use to best model enrollment over time?  Briefly justify your choice. 

 I would choose a bandwidth between… (pick one to justify) 

  0.0 - 0.1 because _____________________________________________________________________________ 

  0.1 - 0.5 because _____________________________________________________________________________ 

  0.5 - 1.0 because _____________________________________________________________________________ 

  1.0 + because ________________________________________________________________________________ 

3. Let’s improve upon our linear model by including some higher-powered terms.  On the next page, I fit a model that 
includes a quadratic term and a model that also includes a cubic term. 

I then compared these models using the omnibus F-test.  

From all this output, which model (if any) would you choose?  Briefly justify your choice. 

 ____________________________________________________________________________________________________ 

 ____________________________________________________________________________________________________ 

 ____________________________________________________________________________________________________ 



Analysis of Variance Table

Model 1: undergrad ~ 1
Model 2: undergrad ~ year
Model 3: undergrad ~ year + I(year^2)
Model 4: undergrad ~ year + I(year^2) + I(year^3)

  Res.Df     RSS Df Sum of Sq        F    Pr(>F)    
1     36 7614556                                    
2     35 1861258  1   5753297 269.4934 < 2.2e-16 ***
3     34  901452  1    959806  44.9588  1.23e-07 ***
4     33  704503  1    196949   9.2254  0.004639 ** 

4. We can use cross-validation to help choose the best model 

Average cross-validated mean square error: Model        
 55020 enrollment = f(year)                                                                           
 29083 enrollment = f(year + year2)                                                                           
 27059 enrollment = f(year + year2 + year3)                                                                           

From this, which model would you choose? 

 ____________________________________________________________________________________________________ 

Model:  y = b0 + b1(x) + b2(x)2 
R2 = 0.8816 
RMSE = 162.8 

Compared to null model: 
F = 126.6 (p < 2.2e-16)

Model:  y = b0 + b1(x) + b2(x)2 + b3(x)3 
R2 = 0.9075 
RMSE = 146.1 

Compared to null model: 
F = 107.9 (p < 2.2e-16)



5. If you’re at all familiar with desmos.com, you can see how to fit linear, polynomial, and nonlinear models using this 
example dataset at:  https://www.desmos.com/calculator/6wzg3nqr3h.  As of November 2014, regression models 
weren’t fully implemented into desmos.com, so they still had some bugs to work out. 

6. Let’s investigate some robust regression methods with a new dataset.  I’ll use a crime dataset from an old edition of 
a statistics book I had in my office.  This dataset contains the following variables for 51 states (counting D.C.): 

 • crime = violent crimes per 100,000 people 
 • pctmetro = percent of population living in metropolitan areas 
 • pctwhite = percent of population that is white 
 • pcths = percent of population with at least a high school education 
 • poverty = percent of population living under poverty 
 • single = percent of population that are single parents 

Source:  Agresti, A. & Finlay, B. (1997). Statistical Methods for Social Sciences, 3rd edition. Prentice Hall. 

Below, I’ve pasted a scatterplot matrix and correlogram for this dataset. 

I fit the following model to this data: 

The residuals plots are displayed to the right. 
(question on next page) 

Model:  crime = b0 + b1(pctmetro) + 
      b2(poverty) + b3(single) 

Formula: y = -1666.4 + 7.829(pctmetro) 
           +17.68(poverty) +132.4(single)  

R2 = 0.8399 
RMSE = 182.1 
F = 82.16 (p < 2.2e-16)

http://desmos.com
https://www.desmos.com/calculator/6wzg3nqr3h
http://desmos.com


Based on those residual plots, which assumptions appear to be violated? 

 ____________________________________________________________________________________________________ 

7. If you look closely at those residual plots, you’ll notice a few data points have been labeled (observations #9, 25, 51).  
These observations (which represent:  9 = Florida, 25 = Mississippi, 51 = Washington DC) have relatively large 
residuals.  To potentially lessen the impact of those outliers, we could run a robust regression analysis. 

Here are the results from a bootstrap-residuals method (like the one on page 8 of activity #12): 

 Bootstrap Residuals Method                                                                                 
 Linear Model  Bootstrap Residuals                                                                                      
 Coefficient Standard Error Coefficient Standard Error                                                                          

(intercept) -1666.4359  147.852 -1664.33 159.7031                                                         
pctmetro 7.8289 1.255 7.797 1.3387                                                                              
poverty 17.6802 6.941 17.661 7.4232                                                                            
single 132.4081 15.503 132.476 16.9180                                                                         

Here are the results from a bootstrap-cases method (like the one on page 9 of activity #12): 

 Bootstrap Cases Method                                                                                     
 Linear Model  Bootstrap Cases                                                                                      
 Coefficient Standard Error Coefficient Standard Error                                                                          

(intercept) -1666.4359  147.852 -1560.263 303.3921                                                       
pctmetro 7.8289 1.255 7.68378 1.4298                                                                         
poverty 17.6802 6.941 18.9687 7.5617                                                                          
single 132.4081 15.503 121.9891 29.9935                                                                       

As we’ve seen, we can use a t-test or confidence interval to test the statistical significance of each coefficient of our 
regression model.  Roughly, a confidence interval is obtained by taking the coefficient +/- 2 standard errors. 

If we were to construct confidence intervals for each coefficient, which (if any) would be significantly different from 
zero?  Circle all the significant coefficients in each row: 

 Linear model: intercept pctmetro poverty single                                                                  
                                          
 Bootstrap-residuals: intercept pctmetro poverty single                                                       

 Bootstrap-cases: intercept pctmetro poverty single                                                             

  



8. Let’s stick with this crime dataset and use a quantile regression model.  First, let’s run a quantile regression model for 
the 50th percentile. 

Here’s the output I got from fitting a model with the predictors pctmetro, poverty, and single: 

Call: rq(formula = crime ~ pctmetro + poverty + single, tau = 0.5, data = crime2)

Coefficients:
            coefficients lower bd    upper bd   
(Intercept) -1704.31718  -2132.91639  -901.89605
pctmetro        7.67461      4.01853     9.24265
poverty        17.75926     15.50658    37.62865
single        137.35707     61.58844   175.70516

Interpret the coefficient for single.  Keep in mind that our dependent variable is the number of crimes per 100,000 
people and the predictor is the percent of the population that are single parents: 

137.36 represents: ________________________________________________________________________________________ 

 ________________________________________________________________________________________                                   

This time, let’s transform all our predictors to z-scores (and not transform our dependent variable).   I run the model 
again and obtain: 

Call: rq(formula = crime ~ scale(pctmetro) + scale(poverty) + scale(single), 
    tau = 0.5, data = crime2)

Coefficients:
                coefficients lower bd  upper bd 
(Intercept)     621.73895    540.39079 657.86311
scale(pctmetro) 168.51253     88.23537 202.94199
scale(poverty)   81.41275     71.08589 172.49882
scale(single)   291.40222    130.65952 372.75748

Interpret the intercept 

621.74 represents: ________________________________________________________________________________________ 

 ________________________________________________________________________________________                                   

Predict the # of crimes (per 100,000) for a state that is +1 standard deviation from the mean on each predictor: 

 Prediction = _________________________________________________________________________________________ 

Predict the # of crimes (per 100,000) for a state that is –1 standard deviation from the mean on each predictor: 

 Prediction = _________________________________________________________________________________________ 



9. Let’s simplify our model to predict crimes based only on the percent of the population that are single parents.  
Here’s a simple linear regression model (notice that I converted the predictor to a z-score): 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)     612.84      33.96   18.05  < 2e-16 ***
scale(single)   370.03      34.30   10.79 1.53e-14 ***

Residual standard error: 242.5 on 49 degrees of freedom
Multiple R-squared:  0.7037, Adjusted R-squared:  0.6977 
F-statistic: 116.4 on 1 and 49 DF,  p-value: 1.529e-14

Now, let’s conduct a quantile regression for the 20th, 40th, 60th, and 80th percentiles: 

From these graphs, what conclusions can we make? 

 ____________________________________________________________________________________________________ 

 ____________________________________________________________________________________________________ 

 ____________________________________________________________________________________________________ 

 ____________________________________________________________________________________________________ 



10. Notice that outlier in the top-right corner of the previous graph?  It represents Washington DC (a “state” in which 
22.1% of its population are single parents).  Let’s eliminate this outlier (with the justification that it’s not a state) and 
see what impact it has on our linear and quantile regression analyses: 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)     566.66      32.18  17.612  < 2e-16 ***
scale(single)   191.93      32.50   5.905  3.5e-07 ***

Residual standard error: 227.5 on 48 degrees of freedom
Multiple R-squared:  0.4208, Adjusted R-squared:  0.4087 
F-statistic: 34.87 on 1 and 48 DF,  p-value: 3.499e-07

Compare this to the linear regression model on the previous page.  What impact did removing this outlier have on 
our results? 

 ____________________________________________________________________________________________________ 

 ____________________________________________________________________________________________________ 

 ____________________________________________________________________________________________________ 

Now let’s again run our quantile regression models: 

From this, what can we conclude about the relationship between the percent of single parents in a state and that 
state’s crime rate? 

 ____________________________________________________________________________________________________ 

 ____________________________________________________________________________________________________ 

 ____________________________________________________________________________________________________ 


