
Assignment #13:  GLM 

1. Suppose you were tasked with developing a model to predict whether a student returns to St. Ambrose for their 
second year.  Identify 4 variables you think might predict a student’s decision to come back: 

 1. __________________________________  2. __________________________________ 

 3. __________________________________  4. __________________________________ 

2. The dataset for this assignment contains 47 variables measured for 1724 observations (students).  The variables 
include: 

 • ACT composite, English, math, reading, and science scores 
 • High school GPA and rank; the number of different high schools attended by each student 
 • Gender and race 
 • The highest level of education completed by each student’s mother and father 
 • Whether the student is a student athlete 
 • The number of credits attempted during each student’s first semester; the first semester GPA 
 • Each student’s major 
 • Responses to a survey that measure each student’s: 
  • commitment to St. Ambrose,  academic ability, ability to pay for tuition, satisfaction with St. Ambrose 
 • (and other variables) 

In this assignment, I’ll need to select a subset of these variables to include in my prediction model.  For now, let’s use 
the following logistic regression model: 

ln(odds of returning to SAU) = b0 + b1(ACTcomp) + b2(HSgpa) + b3(residence) + b4(athlete) + b5(black) 

where ACTcomp = ACT Composite score (ranges from 17 to 35 in this data) 
  HSgpa = high school GPA (ranges from 1.00 to 4.00 in this data) 
  residence = does a student live on campus (1 = off-campus, 0 = on-campus) 
  athlete = (1 = not a student athlete, 0 = student athlete) 
  black = (1 = African-American student; 0 = not African-American student) 

I fit this model in R and obtained the output pasted on the next page… 

Scenario: Over the past few years, our first-to-second year retention rate has ranged from 77-80%.  In other words, 
77-80% of our first-year students come back to St. Ambrose for their second year. 

 Let’s see if we can predict whether a student returns or does not return to St. Ambrose for their second 
year. 

 2011-13 student data:  http://www.bradthiessen.com/html5/data/retention1113.csv 
 2014 student data:  http://www.bradthiessen.com/html5/data/retention14.csv

http://www.bradthiessen.com/html5/data/retention1113.csv
http://www.bradthiessen.com/html5/data/retention14.csv


Call:
glm(formula = retained ~ hsgpa + act_comp + residence + athlete + black, 

family = binomial, data = retention2)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-2.3924   0.3154   0.4008   0.5208   2.2767  

Coefficients:
             Estimate Std. Error z value Pr(>|z|)    
(Intercept) -0.963237   0.543613  -1.772   0.0764 .  
hsgpa        0.945571   0.159675   5.922 3.18e-09 ***
act_comp    -0.002036   0.025909  -0.079   0.9374    
residence1  -2.937433   0.181208 -16.210  < 2e-16 ***
athlete1     0.318550   0.166907   1.909   0.0563 .  
black1      -1.453135   0.310180  -4.685 2.80e-06 ***
---
(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 1638.5  on 1586  degrees of freedom
Residual deviance: 1176.7  on 1581  degrees of freedom
  (126 observations deleted due to missingness)
AIC: 1188.7

Number of Fisher Scoring iterations: 5

Confidence Interval bounds:
                   2.5 %      97.5 %
(Intercept) -2.034430752  0.09844430
hsgpa        0.634007788  1.26045090
act_comp    -0.052733403  0.04891276
residence1  -3.299285334 -2.58814752
athlete1    -0.005794063  0.64928171
black1      -2.061672003 -0.84146513

Exponentiated coefficients:
                    OR      2.5 %     97.5 %
(Intercept) 0.38165560 0.13075489 1.10345294
hsgpa       2.57428251 1.88515074 3.52701146
act_comp    0.99796589 0.94863288 1.05012873
residence1  0.05300161 0.03690954 0.07515914
athlete1    1.37513288 0.99422269 1.91416541
black1      0.23383601 0.12724104 0.43107847

3. Write out the coefficients for this model: 

ln(odds of returning to SAU) = ____________ + ____________(HSgpa) + ____________(ACTcomposite) +  
     

    ____________(residence) + ____________(athlete) + ____________(black) 



4. Just based on the p-values, which predictors appear to predict whether a student returns to St. Ambrose?  Identify 
whether each variable predicts a higher or lower chance of returning to St. Ambrose.  If the predictor is not 
significant, circle “unknown.” 

 Higher HSgpa predicts a student is…………………… MORE LESS UNKNOWN likely to return                                       

 Higher ACT Composite score predicts a student is…. MORE LESS UNKNOWN likely to return                                       

 Living off-campus predicts a student is……………….. MORE LESS UNKNOWN likely to return                                       

 Student athletes are……………………………………… MORE LESS UNKNOWN likely to return                                      

 African-American students are………………………….. MORE LESS UNKNOWN likely to return                                     

  

5. Suppose we have a student with the following: 
 HSgpa = 3.50 
 ACTcomposite = 22 
 Lives on-campus (residence = 0) 
 Is not an athlete (athlete = 1) 
 Is not African-American (black = 0) 

What are the log-odds of this student returning to SAU for his or her second year?   _____________________________ 

What are the odds of this student returning to SAU for his or her second year?   _________________________________ 

What is the probability this student returns to SAU for his or her second year?   __________________________________ 

6. Suppose we have another student identical to the previous one except for the fact that this student lives off-campus. 

What are the log-odds of this student returning to SAU for his or her second year?   _____________________________ 

What are the odds of this student returning to SAU for his or her second year?   _________________________________ 

What is the probability this student returns to SAU for his or her second year?   __________________________________ 



7. Take another look at the exponentiated coefficients of our model. 

Exponentiated coefficients:
                    OR      2.5 %     97.5 %
(Intercept) 0.38165560 0.13075489 1.10345294
hsgpa       2.57428251 1.88515074 3.52701146
act_comp    0.99796589 0.94863288 1.05012873
residence1  0.05300161 0.03690954 0.07515914
athlete1    1.37513288 0.99422269 1.91416541
black1      0.23383601 0.12724104 0.43107847

Interpret the OR value for the variable black.  

 0.2338 represents: _________________________________________________________________________________             

  _________________________________________________________________________________                                               

8. I had R add our predictor variables sequentially and test the contribution of each predictor to our overall prediction 
of student retention: 

Analysis of Deviance Table
Model: binomial, link: logit
Response: retained
Terms added sequentially (first to last)

          Df Deviance Resid. Df Resid. Dev  Pr(>Chi)    
NULL                       1586     1638.5              
hsgpa      1   109.39      1585     1529.1 < 2.2e-16 ***
act_comp   1     4.14      1584     1525.0   0.04199 *  
residence  1   325.18      1583     1199.8 < 2.2e-16 ***
athlete    1     2.20      1582     1197.6   0.13788    
black      1    20.92      1581     1176.7 4.801e-06 ***

Based on this output, what can we conclude about the value of ACTcomposite as a predictor of student retention? 

 ____________________________________________________________________________________________________ 

 ____________________________________________________________________________________________________ 

9. I then fit the following simplified model: 

Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept)  -0.6978     0.4240  -1.646   0.0998 .  
hsgpa         0.8808     0.1348   6.537 6.28e-11 ***
residence1   -2.9458     0.1744 -16.891  < 2e-16 ***
black1       -1.4094     0.3026  -4.658 3.20e-06 ***

(continued on next page) 



Here are the exponentiated coefficients of this model: 

                    OR      2.5 %    97.5 %
(Intercept) 0.49769142 0.21710463 1.1457026
hsgpa       2.41292436 1.85580040 3.1487196
residence1  0.05255923 0.03711802 0.0735883
black1      0.24429733 0.13498105 0.4438793

And here’s a plot of the model: 

Finally, I used this model to make predictions for our Fall 2014 students.  Based on this model, the average retention 
rate for this class is predicted to be 84% (with a confidence interval between 82.5% and 85.5%). 

On-campus, non-African-American students 
Off-campus, non-African-American students 
On-campus, African-American students 
Off-campus, African-American students



10. “Women and children first!”  is a statement you would never hear me say on a boat that is sinking.  But I have heard 
this phrase, so let’s see if age and gender give us a good prediction. 

I fit the model ln(odds of surviving) = b0 + b1(gender) + b2(age) and obtained the following output: 

Coefficients:
             Estimate Std. Error z value Pr(>|z|)    
(Intercept)  0.953783   0.239598   3.981 6.87e-05 ***
sexmale     -2.396153   0.182771 -13.110  < 2e-16 ***
age          0.001847   0.006533   0.283    0.777    

    Null deviance: 956.05  on 711  degrees of freedom
Residual deviance: 754.43  on 709  degrees of freedom
  (188 observations deleted due to missingness)
AIC: 760.43

Exponentiated coefficients
                    OR      2.5 %    97.5 %
(Intercept) 2.59551083 1.63391405 4.1855733
sexmale     0.09106758 0.06327271 0.1296023
age         1.00184876 0.98906771 1.0147600

Scenario: As you know, the Titanic sank in the Atlantic ocean during its maiden voyage from the UK to New York 
after colliding with an iceberg. 

 The dataset we’re going to investigate has the following records for each of the 1309 passengers on 
the Titanic: 

• survival = Survival  (0 = No; 1 = Yes) 
• pclass = Passenger Class  (1 = 1st; 2 = 2nd; 3 = 3rd) 
• name = Name 
• sex = Sex 
• age = Age 
• sibsp = Number of Siblings/Spouses Aboard 
• parch = Number of Parents/Children Aboard 
• ticket = Ticket Number 
• fare = Passenger Fare 
• cabin = Cabin 
• embarked = Port of Embarkation (C = Cherbourg; Q = Queenstown; S = Southampton) 

 Of the 1309 individuals in this dataset, 500 (38.2%) survived.  We’re going to construct some models to 
predict who survived. 

 To help ensure we don’t overfit our data, let’s first split this dataset into two pieces: 

  Training data = 900 randomly selected rows from our dataset 
  Test data = the remaining 409 unselected rows from our dataset 

 We’ll fit our models to the training data and then see how well they predict survival in the test dataset. 

 Titanic data:  http://www.bradthiessen.com/html5/data/titanic.csv 
 R code for this entire assignment:  http://www.bradthiessen.com/html5/data/titanic.csv

http://www.bradthiessen.com/html5/data/titanic.csv
http://www.bradthiessen.com/html5/data/titanic.csv


11. Calculate the probability of a female child (age = 8) surviving.  Then, calculate the probability of a male adult (age 
= 40) surviving.  Calculate the ratio of these two values to find the relative probability. 

  

 P(survive | female child) = _____________________________________________________________________________ 

 P(survive | male adult) = ______________________________________________________________________________ 

 Relative probability = ________________________________________________________________________________ 

12. In the middle of the output, there’s a bold line that states: “(188 observations deleted due to missingness).”  Those 
values were deleted because they represent individuals with no recorded age.  Let’s assume an individual with a 
missing age is an adult.  With this assumption, we can recode our data with this logic: 

 Create a new variable named “child”  
  If age < 18, then child == 1 
  Otherwise, child == 0 

This removes much of the information about the age of the passengers, but it does fill-in those missing values.  
Let’s fit a model with this new variable (replacing age):  ln(odds of surviving) = b0 + b1(gender) + b2(child) 

Coefficients:
            Estimate Std. Error z value Pr(>|z|)    
(Intercept)   0.8836     0.1275   6.928 4.25e-12 ***
sexmale      -2.3643     0.1632 -14.484  < 2e-16 ***
child         0.2622     0.2645   0.991    0.322    

    Null deviance: 1190.30  on 899  degrees of freedom
Residual deviance:  944.06  on 897  degrees of freedom
AIC: 950.06

Exponentiated coefficients
                    OR      2.5 %    97.5 %
(Intercept) 2.59551083 1.89177584 3.1207340
sexmale     0.09106758 0.06796806 0.1289328
age         1.00184876 0.77111942 2.1786271

Repeat the calculations you did above to find the relative probability of surviving for a female child and adult male.  
Use the coefficients from this new model. 

 Relative probability = ________________________________________________________________________________ 



13. That last model took care of our missing data problem, but I bet we 
could improve our model by including another variable.  Rich people 
were probably more likely to survive, so let’s use the “fare” variable as a 
proxy for economic status.   

The histogram to the right shows the fares paid by each passenger.  I 
know the Titanic crashed in 1912, so I can use an inflation calculator to 
see how much these tickets would cost in 2014:  

http://data.bls.gov/cgi-bin/cpicalc.pl?cost1=10&year1=1913&year2=2014 

This calculator tells me that $10 in 1912 is equivalent to $240 in 2014.  That’s  

Coefficients:
            Estimate Std. Error z value Pr(>|z|)    
(Intercept)  0.21880    0.18059   1.212    0.226    
sexmale     -2.23531    0.16971 -13.171  < 2e-16 ***
child1       0.07825    0.26564   0.295    0.768    
Fare210-20   0.36086    0.23792   1.517    0.129    
Fare220-30   0.60701    0.25189   2.410    0.016 *  
Fare230+     1.47663    0.21079   7.005 2.46e-12 ***

    Null deviance: 1190.30  on 899  degrees of freedom
Residual deviance:  890.45  on 894  degrees of freedom
AIC: 902.45

Exponentiated coefficients
                   OR      2.5 %    97.5 %
(Intercept) 1.2445770 0.87363287 1.7755003
sexmale     0.1069594 0.07634206 0.1485584
child1      1.0813961 0.64016684 1.8172592
Fare210-20  1.4345689 0.89754770 2.2837948
Fare220-30  1.8349343 1.11767495 3.0041567
Fare230+    4.3781514 2.90614333 6.6458596

14. Let’s add one more variable to our model.  If you were to look at the names of the individuals in this dataset, you 
would find names like:   

 • Lesurer, Mr. Gustave J 
 • Duff Gordon, Lady. 
 • Rothes, the Countess. of (Lucy Noel Martha Dyer-Edwards) 

Those titles (e.g., Mr., Lady, the Countess) might give us more information about the economic status of these 
individuals.  Using R, I separated the titles from each person’s name and found the following frequencies in our 
training dataset: 

        Capt          Col          Don         Dona           Dr     Jonkheer         Lady 
           1            4            1            1            8            1            1 
       Major       Master         Miss         Mlle          Mme           Mr          Mrs 
           2           61          260            2            1          757          197 
          Ms          Rev          Sir the Countess 
           2            8            1            1 

http://data.bls.gov/cgi-bin/cpicalc.pl?cost1=10&year1=1913&year2=2014


I’m going to combine some of these categories: 
 Mlle = MMe (Madame) + Mlle (Mademoiselle) 
 Sir = Capt + Don + Major + Sir 
 Lady = Dona + Lady + the Countess + Jonkheer (Dutch royalty) 

Then, looking at the original dataset, I see two variables I haven’t yet used: 
• sibsp = Number of Siblings/Spouses Aboard 
• parch = Number of Parents/Children Aboard 

I’m not sure I know why these variables would impact the chances of survival, but let’s combine them and throw 
them into our prediction model.  I’ll add them together to create a variable named “familysize.” 

I can now fit this model:   ln(odds of surviving) = b0 + b1(gender) + b2(child) + b3(fare) + b4(title) + b5(familysize) 

Coefficients: (1 not defined because of singularities)
              Estimate Std. Error z value Pr(>|z|)    
(Intercept)    2.72804    0.42582   6.407 1.49e-10 ***
sexmale       -2.58574    1.50178  -1.722  0.08511 .  
child1         0.19334    0.33334   0.580  0.56192    
Fare210-20     0.38852    0.25636   1.516  0.12964    
Fare220-30     0.92541    0.28051   3.299  0.00097 ***
Fare230+       2.07975    0.25536   8.144 3.81e-16 ***
titleDr        0.56318    1.81996   0.309  0.75698    
titleLady     12.60586  833.92369   0.015  0.98794    
titleMaster    2.03887    1.56605   1.302  0.19295    
titleMiss     -0.71160    0.29961  -2.375  0.01754 *  
titleMlle     12.40316 1029.12152   0.012  0.99038    
titleMr       -0.62362    1.48428  -0.420  0.67438    
titleMrs            NA         NA      NA       NA    
titleRev     -14.75145  633.32473  -0.023  0.98142    
titleSir       0.72010    1.93567   0.372  0.70988    
familysize    -0.54829    0.08104  -6.766 1.33e-11 ***

    Null deviance: 1190.30  on 899  degrees of freedom
Residual deviance:  812.27  on 885  degrees of freedom
AIC: 842.27

Exponentiated coefficients
                      OR         2.5 %        97.5 %
(Intercept) 1.530285e+01  6.808592e+00  3.625575e+01
sexmale     7.534033e-02  2.655653e-03  2.134839e+00
child1      1.213291e+00  6.302789e-01  2.335132e+00
Fare210-20  1.474792e+00  8.896165e-01  2.434150e+00
Fare220-30  2.522913e+00  1.453715e+00  4.372898e+00
Fare230+    8.002461e+00  4.885165e+00  1.331014e+01
titleDr     1.756248e+00  3.780773e-02  8.077053e+01
titleLady   2.983028e+05  2.018948e-42            NA
titleMaster 7.681923e+00  2.479033e-01  2.388904e+02
titleMiss   4.908576e-01  2.703222e-01  8.772456e-01
titleMlle   2.435704e+05  2.033055e-65            NA
titleMr     5.360001e-01  1.933602e-02  1.482430e+01
titleMrs              NA            NA            NA
titleRev    3.922154e-07 1.843144e-124 1.122984e-181
titleSir    2.054632e+00  3.921651e-02  1.359976e+02
familysize  5.779351e-01  4.900285e-01  6.737272e-01



15. Now that we have four different models, let’s see how well they predict survival on our test dataset.  Remember, our 
test dataset includes 409 observations that were not used to estimate the coefficients of our models. 

 Observed results in the test data set: 563 died; 337 survived 

When I fit these models, I get a predicted probability of each individual surviving or dying.  To compare these with 
the actual data, I’m going to use the following rule: 

 If predicted probability of survival > 0.50, then we predict the individual to survive 
 If predicted probability of survival < 0.50, then we predict the individual to die 

Let’s see how our predictions hold on the test data: 

 Model #1:  survival = f(sex, age) 

  Observed deaths Observed survivors                                                                       
 Predicted deaths 220 63                                                                                 
 Predicted survivors 26 100                                                                                    

  
  

 Model #2:  survival = f(sex, child) 

  Observed deaths Observed survivors                                                                       
 Predicted deaths 210 51                                                                                 
 Predicted survivors 36 112                                                                                    

 Model #3:  survival = f(sex, child, fare) 

  Observed deaths Observed survivors                                                                       
 Predicted deaths 210 51                                                                                 
 Predicted survivors 36 112                                                                                    

 Model #4:  survival = f(sex, child, fare, family size)  — (note: I had some problems with the title variable, so I removed it) 

  Observed deaths Observed survivors                                                                       
 Predicted deaths 199 52                                                                                 
 Predicted survivors 47 111                                                                                    

On the next page, we’ll calculate an index to see how well each model fit. 



16. We can use a statistic called Cohen’s Kappa to measure the agreement between two measures.  Given the 
following table: 

  Observed deaths Observed survivors Total                                                                                    
 Predicted deaths a b W                                                                                                                      
 Predicted survivors c d X                                                                                                                   
 Total Y Z N                                                                                                                                            

We’d calculate Kappa as 

Use the online applet at http://www.graphpad.com/quickcalcs/kappa1/ to calculate Kappa for each table on the 
previous page: 

 Model 1 kappa = ____________________________________________________________________________________ 

 Model 2-3 kappa = __________________________________________________________________________________ 

 Model 4 kappa = ____________________________________________________________________________________ 

Perfect agreement would yield Kappa = 1.  Anything less than 1.0 represents less-than-perfect agreement.  If 
Kappa is negative, it means the model agreed less with the actual data than we’d expect just by chance. 

Which model provided us the best prediction?   Model # ____________. 

17. Since roughly 38% of the passengers survived, maybe we should only predict survival for the individuals with 
predicted probabilities of surviving of 38% or greater.  If we do that, we get the following results for models 3-4: 

 Model #3:  survival = f(sex, child, fare) 
  Observed deaths Observed survivors                                                                       
 Predicted deaths 205 47  Kappa = _________________                                                                                                     
 Predicted survivors 41 116                                                                                    

 Model #4:  survival = f(sex, child, fare, family size) 
  Observed deaths Observed survivors                                                                       
 Predicted deaths 182 43  Kappa = _________________                                                                                                     
 Predicted survivors 64 120                                                                                    

Calculate Kappa for each model. 
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http://www.graphpad.com/quickcalcs/kappa1/


18. If we have time, I’ll show you how to construct decision trees to make predictions.  Here’s the results of a decision 
tree for this Titanic dataset: 

Reading these trees can be tricky, so let’s give it a shot. 


