
Lesson 11:  Multiple regression & Model Selection Packages used: mosaic, ggvis, dplyr, leaps, car, DAAG, MASS, genridge 

1. In the previous lesson, we modeled prestige as a function of income.  Suppose we wanted to know whether 
education, income, or %women best predicts prestige.  We might decide to evaluate three models: 

2. The R2 values from those 3 models sum to 1.2479.  How is that possible?   

3. If you had to select a single predictor of prestige, which predictor (income, education, %women) would you choose?   

Scenario: Recall our prestige dataset:  http://www.bradthiessen.com/html5/data/prestige.csv 

 Source:  Canada (1971).  Census of Canada.  Vol. 3, Part 6.  Statistics Canada, 19-21.
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Correlations:
             | education  income   %women prestige
   ----------+------------------------------------
   education |   1.0000
      income |   0.5776   1.0000
      %women |   0.0619  -0.4411   1.0000
    prestige |   0.8502   0.7149  -0.1183   1.0000

Rprestige, income
2 = 0.5111

Model:  prestige = b0 + b1(income) 
Least-squares line:  y = 27.14 + 0.003x 
R2 = 0.5111 
AIC = 801.88 
RMSE = 12.09 
F = 104.54 (p < 0.00001)

Model:  prestige = b0 + b1(education) 
Least-squares line:  y = -10.7 + 5.36x 
R2 = 0.7228 
AIC = 744.01 
RMSE = 9.10 
F = 260.75 (p < 0.00001)

Model:  prestige = b0 + b1(% women) 
Least-squares line:  y = 48.7 – 0.06x 
R2 = 0.014 
AIC = 873.43 
RMSE = 17.17 
F = 1.42 (p = 0.2362)

http://www.bradthiessen.com/html5/data/prestige.csv


4. In the previous lesson, we conduct an F-test to compare a model with no predictors to a model with the income 
predictor.   That F-test indicated the full model with income as a predictor was better than the reduced model. 

Can we extend this process by adding a second predictor?  With a single independent variable, we visualize our 
regression model as a line through a 2-dimensional scatterplot of data.  With 2 predictors, we’re fitting a 2-
dimensional plane to a 3-dimensional scatterplot. 

Write out the models to determine if the combination of income and education provides a better prediction of 
prestige than a model with no predictors: 

Full model:  ______________________________________ Reduced model:  ____________________________________ 

5. In the previous lesson, we derived simple formulas to calculate the slope and y-intercept of the least-squares line.  
How do we estimate the coefficients for the best-fitting plane (with 2 predictors) or hyperplane (with 3+ predictors)? 

We can use some simple matrix algebra to find the coefficients that minimize the sum of squared errors.  Suppose 
we have n observations in our dataset, with p predictors in our full model.  Our full model, then, in matrix notation is: 

If linear algebra were a prerequisite for this course, we could show the least-squares solution is: 

Let’s have R estimate the parameters for our full and reduced models: 

 
Interpret the coefficients: 

From the coefficients, can we determine which variable (income or education) is the better predictor of prestige? 
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reducedmodel <- lm(prestige ~ 1, data = prestige) # Prestige is a function of a constant
fullmodel <- lm(prestige ~ income + education, data = prestige) # Prestige = f(income, education)
coef(reducedmodel) # Get coefficients
coef(fullmodel)
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Reduced:  ŷ = Y = 46.833

Full:  ŷ = −6.8478 + 0.0014x1 + 4.1374x2

Full:  ŷ = −6.8478 + 0.0014 income( )+ 4.1374 education( )

http://www.stat.purdue.edu/~jennings/stat514/stat512notes/topic3.pdf


6. To compare these models with our omnibus F-test, we need to know R2 for each model.   

We know R2 = 0 for the reduced model (since it has no predictors), but how do we calculate R2 for the full model?  
What does it mean to have a correlation among more than two variables? 

Suppose we calculate the correlation between two variables:  X and Y.  We already know we find the least squares 
regression line that linearly transforms the X values into predicted Y values.  Since linear transformations have no 
impact on correlation coefficients, the correlation between X and Y can be interpreted as the correlation between 
the observed and predicted Y values. 

With this logic, we can calculate R with multiple predictors — we simply need to calculate the correlation between 
our observed Y values and the Y values predicted by the predictors.   

The following table displays the predicted prestige scores based on our income and education predictors: 

A computer can calculate the multiple correlation between the observed and expected prestige scores to be 0.893.   

If we square this value, we get:                  .  Interpret this value. 

7. To compare our models, we can use the omnibus F-test (or an ANOVA summary table).  Let’s do both: 
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Title Prestige Prediction (from full model)
Physicians 87.2 100.4534
Professors 84.6 63.2932

… … …
Newsboys 14.8 29.8004

Ry, x1, x2

2 = 0.798

F n−kfull−1
 kfull−kreduced =

Rfull
2 − Rreduced

2( ) / kfull − kreduced( )
1− Rfull

2( ) / n − kfull −1( ) =
MSreg

MSE
=

Source SS df MS MSR (F)

Regression 
(b1 , b2 | b0) k = 195.55

Error n - k -1 = p < 0.0001

Total n -1 = 
MStotal R2 = 0.798

summary(fullmodel) # Summarize model (get omnibus F-statistic and p-value)
anova(fullmodel) # ANOVA table for full model (with each predictor as a separate source of variation)
anova(reducedmodel, fullmodel) # ANOVA table comparing full with reduced model



8. Here’s some output from R.  Verify our calculation and state any conclusions we can make. 

> summary(fullmodel)

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept) -6.8477787  3.2189771  -2.127   0.0359 *  
income       0.0013612  0.0002242   6.071 2.36e-08 ***
education    4.1374444  0.3489120  11.858  < 2e-16 ***

Residual standard error: 7.81 on 99 degrees of freedom
Multiple R-squared:  0.798,  Adjusted R-squared:  0.7939 
F-statistic: 195.6 on 2 and 99 DF,  p-value: < 2.2e-16

> anova(fullmodel)
Analysis of Variance Table
         Df  Sum Sq Mean Sq F value    Pr(>F)    
income     1 15279.3 15279.3  250.49 < 2.2e-16 ***
education  1  8577.3  8577.3  140.62 < 2.2e-16 ***
Residuals 99  6038.9    61.0                      

> anova(reducedmodel, fullmodel)
Model 1: prestige ~ 1
Model 2: prestige ~ income + education
  Res.Df     RSS Df Sum of Sq      F    Pr(>F)    
1    101 29895.4                                  
2     99  6038.9  2     23857 195.55 < 2.2e-16 ***

> AIC(fullmodel, reducedmodel)
             df      AIC
fullmodel     4 713.7251
reducedmodel  2 872.8732

9. Let’s add another predictor — %women — to our model.  Does the combination of income, education, and % women 
predict prestige better than a model with no predictors?   To do this, we would compare: 

  

Make sure you can interpret those coefficients and the squared multiple correlation.  Interpret the following output: 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept) -6.7943342  3.2390886  -2.098   0.0385 *  
income       0.0013136  0.0002778   4.729 7.58e-06 ***
education    4.1866373  0.3887013  10.771  < 2e-16 ***
percwomn    -0.0089052  0.0304071  -0.293   0.7702    

Residual standard error: 7.846 on 98 degrees of freedom
Multiple R-squared:  0.7982, Adjusted R-squared:  0.792 
F-statistic: 129.2 on 3 and 98 DF,  p-value: < 2.2e-16
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Reduced:  ŷ = b0 = Y = 46.833

Full:  ŷ = b0 + b1x1 + b2x2 + b3x3

Full:  ŷ = −6.794 + 0.0013 income( )+ 4.1866 education( )− 0.0089(%women)

Ry, x1, x2 , x3

2 = 0.7982

fullmodel <- lm(prestige ~ income + education + percwomn, data=prestige)
summary(fullmodel)



10. Suppose we add another predictor (any predictor) to our model.  What would happen to the value of  R2?   

Because R2 will increase monotonically when we add predictors (even if those predictors are virtually unrelated to 
the dependent variable), we may want to use another statistic to evaluate the fit of our model. 

We’ve already encountered Akaike’s AIC: 

Remember, lower values of AIC indicate better fit.  That means AIC penalizes models that have more parameters.  
Here are the values of AIC for the 3 models we’ve fit thus far: 

             df      AIC
fullermodel   5 715.6358   (predictors = income, education, %women)
fullmodel     4 713.7251   (predictors = income, education)
reducedmodel  2 872.8732   (predictors = none)

Adjusted R-squared is an alternative to AIC that evaluates the fit of a model while penalizing models with more 
parameters.  As we add predictors, adjusted R-squared will increase only if the additional predictor improves the 
prediction more than would be expected by chance: 

For our model with 3 predictors,  

For all 3 of our models:  

             adjusted R-squared
fullermodel  0.792    (predictors = income, education, %women)
fullmodel     0.794    (predictors = income, education)
reducedmodel  0.000    (predictors = none)

From the AIC or adjusted R-squared values, which model might we want to choose?   

What do these values indicate about the %women predictor? 

11. Let’s look one last time at our full model with 3 predictor variables: 

Explain why we can’t simply compare the magnitude of the coefficients to determine which predictor is best? 
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AIC = −2 ln Lmodel( )+2 # of coefficients in model+1( )

Radjusted
2 = 1− 1− R2( ) n −1

n − k −1
= R2 − 1− R2( ) k

n − k −1
= 1− MSE

MSTotal

Radjusted
2 = R2 − 1− R2( ) k

n− k −1
= 0.7982− 1−0.7982( ) 3

102− 3−1
= 0.792

Full:  ŷ = −6.794 + 0.0013 income( )+ 4.1866 education( )− 0.0089(%women)



12. If we want to compare coefficients in our model, we could calculate standardized beta coefficients.   

One way to do this would be to convert all our predictors to z-scores before estimating the regression model. 
We could also run the regression with our (untransformed) predictors and then convert the coefficients with: 

As an example, suppose we want to convert the coefficient of education to a standardized beta coefficient: 

Converting all the coefficients yields the following.  Interpret one of these coefficients. 

Why is there no intercept? 

Explain why we must still be cautious when comparing these beta coefficients. 

13. Before we begin the model selection process, let’s evaluate the conditions necessary for linear regression.  We’ve 
already discussed several of these conditions:  validity, linearity, independent errors, equal variance of errors, and 
normality of errors. 

Based on the following model plots (from our full model with 3 predictors), evaluate the linearity, equal variances, 
and normality assumptions. 
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βk = bk
sxk
sy

β2 = b2
sx2
s2

= 4.1866 2.7284
17.204

= 0.66396

ŷ = 0.32418 zincome( )+ 0.66396 zeducation( )− 0.01642 z%women( )

coef(lm(scale(prestige) ~ scale(income) + scale(education) + scale(percwomn), data=prestige)) # scale = z



14. Look at the parameters for our models with two and three predictors: 

Notice that the coefficients remained fairly stable when we added a new predictor.  That’s a good sign we don’t 
have a multicollinearity problem. 

Multicollinearity is when two or more predictors in our model are highly correlated (meaning that one can be 
linearly predicted from the others).  One effect of multicollinearity is that the coefficients change wildly when we 
add or subtract predictors. 

To detect multicollinearity, we can use the VIF (variance inflation factor):                        

where        is the R-squared value obtained by regressing predictor k on the remaining predictors. 

If you want to learn the details of VIF, I’d suggest:  https://onlinecourses.science.psu.edu/stat501/node/347 

For now, I’ll just note the following rules of thumb: 
• If the largest VIF is greater than 10 then there is cause for concern (Bowerman & O’Connell, 1990; Myers, 1990). 
• If the average VIF is substantially greater than 1 then the regression may be biased 

   income education  percwomn 
 2.282038  1.845165  1.526593 

[1] 1.500598

Evaluate the multicollinearity assumption based on these VIF calculations. 

15. To test the condition of independence-of-errors, we can use the Durbin-Watson statistic: 

where e represents the residual (prediction error) for observation t. 

The D statistic ranges from 0 to 4, with independent errors yielding a value near 2.  Values of D larger or smaller 
than 2 suggesting errors are not independent.  R can calculate the D statistic and estimate its p-value: 

 lag Autocorrelation D-W Statistic p-value
   1       0.4032531      1.170379       0
 Alternative hypothesis: rho != 0

From this, evaluate the assumption of independent errors. 
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ŷ = −6.848 + 0.0014 income( )+ 4.1374 education( )
ŷ = −6.794 + 0.0013 income( )+ 4.1866 education( )− 0.0089 %women( )

VIFk =
1

1− Rk
2

Rk
2

vif(fullmodel) # VIF for each predictor in the full model

mean(vif(fullmodel)) # mean VIF value

D =
et − et−1( )2∑
et
2∑

durbinWatsonTest(fullmodel) # Durbin-Watson statistic for full model

https://onlinecourses.science.psu.edu/stat501/node/346
https://onlinecourses.science.psu.edu/stat501/node/347
http://www.pages.drexel.edu/~tpm23/STAT902/DWTest.pdf


Model Selection 

16. So far, we’ve only compared the total contribution of 1, 2, and 3 predictors to reduced models with no predictors.  
Suppose we’re interested in finding a model that adequately predicts prestige using relatively few predictors.   

Recall that we found income was a significant predictor of prestige.  The R-squared value of                            yielded 
an omnibus F-statistic of 104.54. 

We then found the combination of income and education —    and F = 195.55 — were better than a 
reduced model with no predictors. 

Our question is now:  Did adding education as a predictor significantly improve our prediction? 

Write out the full and reduced models we want to compare to answer this question: 

Full model:  ______________________________________ Reduced model:  ____________________________________ 

17. We can use our omnibus F-test or ANOVA summary table to compare these models.  Verify these calculations. 

        Df  Sum Sq Mean Sq F value    Pr(>F)    
income     1 15279.3 15279.3  250.49 < 2.2e-16 ***
education  1  8577.3  8577.3  140.62 < 2.2e-16 ***
Residuals 99  6038.9    61.0              

Calculate the omnibus F-test to verify the value of F = 140.62. 

Calculate and interpret:      =  
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RY,1
2 = 0.5111

RY,12
2 = 0.7980

Source SS df MS MSR (F)

income & education 23856.55 2 11928.3 195.55

income 15276.56 1 15276.6 104.54

education | income 8579.99 1 8580 140.7

Error 6038.876 99 61

Total 29895.426 101 MStotal

anova(fullmodel) # ANOVA for full model with 2 predictors

RPrestige, education | income
2



18. Let’s continue this forward-selection process by adding another predictor to our model.  Let’s add %women. 

Our question is:  Does %women significantly improve our prediction over a model with income and education? 
    or:  Should we add %women to predict prestige if we’re already using income and education? 

Write out the full and reduced models of interest. 

Full model:  ______________________________________ Reduced model:  ____________________________________ 

Using R, I calculated the following: 

Use the omnibus F-test to answer our question: 

Analysis of Variance Table
         Df  Sum Sq Mean Sq  F value Pr(>F)    
income     1 15279.3 15279.3 248.1727 <2e-16 ***
education  1  8577.3  8577.3 139.3167 <2e-16 ***
percwomn   1     5.3     5.3   0.0858 0.7702    
Residuals 98  6033.6    61.6   

Should we include %women as predictor of prestige?  Explain. 

19. Suppose we decided to use all 3 predictors.  We could then construct confidence and prediction intervals for the 
predicted prestige of a job with income = 5000, education = 10, and %women = 40: 

  
Interpret: 
 Predicted prestige = 42.74 
  

 Confidence interval:  (39.78, 45.70) 

 Prediction interval:  (27.27, 58.21) 
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RY1
2 = 0.511       RY12

2 = 0.798       RY123
2 = 0.7982

RY2
2 = 0.723       RY13

2 = 0.559
RY3

2 = 0.014       RY23
2 = 0.752

anova(fullmodel) # ANOVA for full model with 3 predictors

predict(fullmodel, list(income=5000,education=10,percwomn=40), interval=“conf") # Confidence Interval
predict(fullmodel, list(income=5000,education=10,percwomn=40), interval=“pred") # Prediction Interval



20. The following figure and table attempt to visualize the contribution of two predictors on a dependent variable. 

21. Let’s turn to a simpler dataset to investigate interaction within the framework of regression.   
The htwt dataset lists 4 measurements for 1000 subjects: 

 y = weight = weight of each subject at age 16 (in kg) 
 x1 = height = height of each subject at age 16 (in cm) 
 x2 = male = (1 = male, 0 = female) 
 x3 = mal = malaise score for each subject at age 22 

variable  mean std. dev
weight  57.172 9.656277
height 166.163 8.025138
gender (50.9% female, 49.1% male)
mal   2.591 2.842851

Suppose we’re interested in modeling an individual’s weight as a function of their height.  We could compute: 

 
We might then decide to see how well the combination of height and gender predict weight by comparing: 

      to get 
 

         with 

Interpret that coefficient (–1.3439) for the male predictor variable. 
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The following display attempts to visualize the contribution of two independent variables to the prediction of one dependent variable. 
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Full:  ŷ = b0 + b1 height( )+ b2 female( )
Reduced:  ŷ = b0

ŷ = −46.764 + 0.62551 height( ) R2 = .2702       Radj
2 = .2695       sy|x = 8.253       AIC = 7063

Full:  ŷ = −53.788 + 0.67175 height( )−1.3439 male( )
Reduced:  ŷ = 57.17209

R2 = .2736       Radj
2 = .2721       sy|x = 8.238       AIC = 7060



22. Interpret the following output and plots: 

Analysis of Variance Table

Response: weight
           Df Sum Sq Mean Sq  F value  Pr(>F)    
height      1  25173 25172.9 370.9122 < 2e-16 
gender      1    314   313.8   4.6231 0.03178  
Residuals 997  67664    67.9              

23. From the output displayed above, calculate: 

24. Now let’s go back to our question:  Does height predict weight the same way for males and females? 

When we construct a model such as      
             ,  
we’re indicating that weight differs by a constant 
amount for males and females.  No matter what 
height we substitute into this model, males and 
females with that same height will differ by 1.3439 kg 
(see the parallel regression lines to the right) 

If we want to model an interaction between height 
and gender, we need to put that into our model.  We 
could do this in one of two ways: 

a) Split our data into two sets (one dataset for males 
and another for females).  We could then run a 
separate regression analysis for each dataset. 

b) Incorporate an interaction (product) term into our model and run a single regression analysis. 

Let’s try both options: 
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Rweight, height, gender
2 =

ŷ = −53.788 + 0.67175 height( )−1.3439 male( )

   Model |    25486.61     2   12743.305               Prob > F      =  0.0000
Residual |  67663.8236   997  67.8674259               R-squared     =  0.2736
---------+------------------------------               Adj R-squared =  0.2721
   Total |  93150.4336   999  93.2436773               Root MSE      =  8.2382

------------------------------------------------------------------------------
  weight |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval]
---------+--------------------------------------------------------------------
  female |   1.343864   .6250126      2.150   0.032       .1173726    2.570355
  height |   .6717493   .0389541     17.245   0.000       .5953079    .7481908
   _cons |  -55.13182   6.658765     -8.280   0.000      -68.19863   -42.06502
------------------------------------------------------------------------------

predict p1

sort female height

graph twoway scatter weight p1 height, msym(oh i) con(. L) jitter(1) legend(off)

regress weight female height fxh

  Source |       SS       df       MS                  Number of obs =    1000
---------+------------------------------               F(  3,   996) =  128.78
   Model |  26034.4351     3  8678.14505               Prob > F      =  0.0000
Residual |  67115.9985   996  67.3855406               R-squared     =  0.2795
---------+------------------------------               Adj R-squared =  0.2773
   Total |  93150.4336   999  93.2436773               Root MSE      =  8.2089

------------------------------------------------------------------------------
  weight |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval]
---------+--------------------------------------------------------------------
  female |   38.26321   12.96338      2.952   0.003       12.82455    63.70188
  height |   .7706638    .052059     14.804   0.000       .6685058    .8728217
     fxh |  -.2227448   .0781214     -2.851   0.004      -.3760463   -.0694434
   _cons |  -72.01376   8.892743     -8.098   0.000      -89.46442   -54.56309
------------------------------------------------------------------------------

twoway (scatter weight height, msym(Oh) jitter(2))(lfit weight height if ~female) ///
(lfit weight height if female), legend(off)



Option (a):  Split our data into two sets (one for males and another for females); run separate regression for each. 

The computer found the following parameter estimates: 

Explain how the effect of height on weight differs by gender. 

Option (b):  Incorporate an interaction (product) term into our model and run a single regression analysis. 

We could add an interaction term into our model: 

and estimate these coefficients: 

To interpret this interaction term (and its coefficient), we can do some manual arithmetic 

For males: 

For females: 

Notice the coefficients (from the model with the interaction term)  
are the same as those from the two separate regression analyses. 

We could test our interaction effect with the omnibus F-test: 
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## Split data to create data.frame for males and another for females
males <- htwt %>%
  filter(gender=="male")

females <- htwt %>%
  filter(gender=="female")

## Run regression for each data.frame 

male.model <- lm(weight ~ height, data=males)
coef(male.model)

female.model <- lm(weight ~ height, data=females)
coef(female.model)

Males:  ŷ = −72.01376 + 0.77066 height( )
Females:  ŷ = −33.75055 + 0.54792 height( )

ŷ = b0 +b1 height( )+b2 female( )+b12 height x female( )

ŷ = −33.75 + 0.5479 height( )− 38.2632 male( )+ 0.2227 height x male( )

interaction.model <- lm(weight ~ height * gender, data=htwt) # Notice * gives us interaction 
int.model <- lm(weight ~ height + gender + height:gender, data=htwt) # Another way to specify model

ŷ = −33.75 + 0.5479 height( )− 38.2632 male( )+ 0.2227 height x male( )
ŷ = −33.75 + 0.5479 height( )− 38.2632 1( )+ 0.2227 height x 1( )
ŷ = −72.0132 + 0.7706 height( )

ŷ = −33.75 + 0.5479 height( )− 38.2632 male( )+ 0.2227 height x male( )
ŷ = −33.75 + 0.5479 height( )− 38.2632 0( )+ 0.2227 height x 0( )
ŷ = −33.75 + 0.5479 height( )

              Df Sum Sq Mean Sq  F value    Pr(>F)    
height          1  25173 25172.9 373.5646 < 2.2e-16
gender          1    314   313.8   4.6562  0.031181  
height:gender   1    548   547.8   8.1297  0.004445 
Residuals     996  67116    67.4             



25. In the previous example, we used a forward-selection process to evaluate different prediction models.  This time, 
let’s try a backwards-selection process.  Let’s start with a full model containing all our predictors, including the 
interaction terms.  Then, we’ll remove predictors from our model to see if the fit significantly worsens. 

But first, let’s investigate the multicollinearity condition: 

[1] 46531.9

Based on the mean VIF of this model, we have a serious multicollinearity problem.  That’s to be expected, since we 
expect these predictors to be correlated.  For example, the correlation between HS GPA and HS Rank is r = 0.903.  
We shouldn’t include both those predictors in a model. 

Scenario: Let’s see how well we can predict the fall semester GPAs of St. Ambrose freshmen based on: 

 • HS GPA = high school GPA    • HS %ile rank = high school percentile rank 
 • Athlete = student athlete?    • ACT score = ACT Composite score 
 • Hours studying = hours studying per week  • Gender = male or female 

Data:  http://www.bradthiessen.com/html5/data/gpadata.csv 
Note:  I only kept records with no missing data.  How could we handle missing data?
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Student
y  

1st sem. GPA
x1 

HS GPA
x2 

HS %ile rank
x3 

Athlete
x4 

ACT score
x5 

Hours studying
x6 

Gender
1 2.87 2.82 43 no 24 5 male
2 3.16 3.49 76 no 32 7 male
… … … … … … … …

255 1.69 3.26 70 yes 21 4 male
Mean 2.65 3.275 63.27 34.9% 22.96 10.62 56.5%

Std. Dev 0.75 0.52 24.48 athletes 3.66 8.90 female

interact.model <- lm(sauGPA ~ hsGPA*athlete*ACTscore*hoursSTUDY*gender, data=gpa) # All interactions
mean(vif(interact.model)) # VIF to check for multicollinearity

http://www.bradthiessen.com/html5/data/gpadata.csv


26. When I summarize that full model with all the interaction terms, here’s the output from R: 

Coefficients:                                            Estimate Std. Error t value Pr(>|t|)
(Intercept)                                             -2.858533   8.896733  -0.321    0.748
hsGPA                                                    1.426448   2.616383   0.545    0.586
athletenot athlete                                      -3.421158  10.001927  -0.342    0.733
ACTscore                                                 0.187316   0.413151   0.453    0.651
hoursSTUDY                                              -0.189176   0.984171  -0.192    0.848
gendermale                                              -2.068469  10.249080  -0.202    0.840
hsGPA:athletenot athlete                                 0.782668   2.923433   0.268    0.789
hsGPA:ACTscore                                          -0.043748   0.117887  -0.371    0.711
athletenot athlete:ACTscore                              0.114351   0.467675   0.245    0.807
hsGPA:hoursSTUDY                                         0.059479   0.280278   0.212    0.832
athletenot athlete:hoursSTUDY                            0.322663   1.043032   0.309    0.757
ACTscore:hoursSTUDY                                      0.004147   0.041278   0.100    0.920
hsGPA:gendermale                                         0.371719   3.018346   0.123    0.902
athletenot athlete:gendermale                           12.750745  12.524280   1.018    0.310
ACTscore:gendermale                                      0.057158   0.479190   0.119    0.905
hoursSTUDY:gendermale                                    0.189588   1.092736   0.173    0.862
hsGPA:athletenot athlete:ACTscore                       -0.024624   0.132866  -0.185    0.853
hsGPA:athletenot athlete:hoursSTUDY                     -0.098374   0.295006  -0.333    0.739
hsGPA:ACTscore:hoursSTUDY                               -0.001345   0.011449  -0.117    0.907
athletenot athlete:ACTscore:hoursSTUDY                  -0.007738   0.044410  -0.174    0.862
hsGPA:athletenot athlete:gendermale                     -3.125614   3.679553  -0.849    0.397
hsGPA:ACTscore:gendermale                               -0.010055   0.136975  -0.073    0.942
athletenot athlete:ACTscore:gendermale                  -0.633812   0.584537  -1.084    0.279
hsGPA:hoursSTUDY:gendermale                             -0.042746   0.316015  -0.135    0.893
athletenot athlete:hoursSTUDY:gendermale                -0.507255   1.302175  -0.390    0.697
ACTscore:hoursSTUDY:gendermale                          -0.005725   0.045755  -0.125    0.901
hsGPA:athletenot athlete:ACTscore:hoursSTUDY             0.002488   0.012228   0.203    0.839
hsGPA:athletenot athlete:ACTscore:gendermale             0.155965   0.165924   0.940    0.348
hsGPA:athletenot athlete:hoursSTUDY:gendermale           0.112163   0.372868   0.301    0.764
hsGPA:ACTscore:hoursSTUDY:gendermale                     0.001181   0.012903   0.092    0.927
athletenot athlete:ACTscore:hoursSTUDY:gendermale        0.028069   0.055376   0.507    0.613
hsGPA:athletenot athlete:ACTscore:hoursSTUDY:gendermale -0.006461   0.015409  -0.419    0.675

Residual standard error: 0.5361 on 223 degrees of freedom
Multiple R-squared:   0.55, Adjusted R-squared:  0.4874 
F-statistic: 8.791 on 31 and 223 DF,  p-value: < 2.2e-16
AIC = 437.512

Forget about trying to interpret those coefficients.  What does that F-statistic (F = 8.791) tell us? 

What do the p-values for each parameter estimate tell us? 

27. Let’s try a second model that has all the predictors with no interaction terms. 

Based on the following output, should we keep the interaction terms in our model? 

Full model: Coefficient 95% Confidence interval
AIC = 402.7862 (intercept) -1.043, -0.054
R2 = 0.5184 hsGPA +0.525, +0.852
adj. R2 = 0.5088 Not athlete -0.178, +0.120
RMSE = 0.5248 ACTscore +0.020, +0.066
F = 53.612 hoursSTUDY +0.002, +0.017
p < 2.2e-16 Male -0.422, -0.128
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no.interact <- lm(sauGPA ~ hsGPA + athlete + ACTscore + hoursSTUDY + gender, data=gpa)



28. We could use our omnibus F-test to compare the model with all predictors (and no interaction terms) to the model 
with all the predictors and interaction terms. 

Analysis of Variance Table

Model 1: sauGPA ~ hsGPA * athlete * ACTscore * hoursSTUDY * gender
Model 2: sauGPA ~ hsGPA + athlete + ACTscore + hoursSTUDY + gender
  Res.Df    RSS  Df Sum of Sq      F Pr(>F)
1    223 64.091                            
2    249 68.583 -26    -4.492 0.6011 0.9384

Based on that, what conclusion do you make regarding the interaction terms? 

29. If you look at the output pasted in question #27, you’d notice the athlete variable doesn’t seem to help our 
prediction.  Let’s eliminate it and run the omnibus F-test: 

No athlete model: Coefficient 95% Confidence interval
R2 = 0.5181 (intercept) -1.052, -0.080
adj. R2 = 0.5104 hsGPA +0.526, +0.852
RMSE = 0.5239 ACTscore +0.020, +0.065
F = 67.21 hoursSTUDY +0.002, +0.017
p < 2.2e-16 Male -0.399, -0.129
AIC = 400.94

Analysis of Variance Table
Model 1: sauGPA ~ hsGPA + ACTscore + hoursSTUDY + gender
Model 2: sauGPA ~ hsGPA + athlete + ACTscore + hoursSTUDY + gender
  Res.Df    RSS Df Sum of Sq      F Pr(>F)
1    250 68.624                           
2    249 68.583  1  0.041239 0.1497 0.6991

Based on that, what conclusion do you make regarding the athlete predictor? 

30. We could continue this backwards-selection process by eliminating the hours studying variable: 

No hours model: Coefficient 95% Confidence interval
R2 = 0.5072 (intercept) -1.128, -0.156
adj. R2 = 0.5014 hsGPA +0.541, +0.869
RMSE = 0.5288 ACTscore +0.026, +0.070
F = 86.13 Male -0.411, -0.139
p < 2.2e-16
AIC = 404.64

Model 1: sauGPA ~ hsGPA + ACTscore + gender
Model 2: sauGPA ~ hsGPA + ACTscore + hoursSTUDY + gender
  Res.Df    RSS Df Sum of Sq      F  Pr(>F)  
1    251 70.175                              
2    250 68.624  1    1.5516 5.6525 0.01818 *

Based on the F-statistic, its p-value, or AIC, what conclusion do you make regarding the hours studying predictor? 

�15

anova(interact.model, no.interact)



31. Adding or removing a single predictor at a time can be tedious.  We can automate this process to fit every 
combination of our predictors using best subsets regression. 

With 5 predictors to choose from, we could fit: • 1 model with no predictor 
 • 5 models each having a single predictor 
 • 10 models each having 2 predictors 
 • 10 models each having 3 predictors 
 • 5 models each having 4 predictors 
 • 1 model with all 5 predictors 

That gives us a total of   possible regression models to compare.  You can see how this method 
becomes computationally complex when we have a larger number of predictors. 

Best subsets regression fits all these models and then compares them using a criterion (such as R-squared or AIC).  
We’ll use the leaps package in R to use best subsets regression: 

Selection Algorithm: exhaustive
          hsGPA athlete ACTscore hoursSTUDY gendermale
1  ( 1 )  "*"   " "       " "      " "        " "       
1  ( 2 )  " "   " "       "*"      " "        " "       
1  ( 3 )  " "   " "       " "      "*"        " "       
1  ( 4 )  " "   " "       " "      " "        "*"       
1  ( 5 )  " "   "*"       " "      " "        " "       
2  ( 1 )  "*"   " "       "*"      " "        " "       
2  ( 2 )  "*"   " "       " "      " "        "*"       
2  ( 3 )  "*"   " "       " "      "*"        " "       
2  ( 4 )  "*"   "*"       " "      " "        " "       
2  ( 5 )  " "   " "       "*"      " "        "*"       
2  ( 6 )  " "   " "       "*"      "*"        " "       
2  ( 7 )  " "   "*"       "*"      " "        " "       
2  ( 8 )  " "   " "       " "      "*"        "*"       
2  ( 9 )  " "   "*"       " "      "*"        " "       
2  ( 10 ) " "   "*"       " "      " "        "*"       
3  ( 1 )  "*"   " "       "*"      " "        "*"       
3  ( 2 )  "*"   " "       " "      "*"        "*"       
3  ( 3 )  "*"   " "       "*"      "*"        " "       
3  ( 4 )  "*"   "*"       "*"      " "        " "       
3  ( 5 )  "*"   "*"       " "      " "        "*"       
3  ( 6 )  "*"   "*"       " "      "*"        " "       
3  ( 7 )  " "   " "       "*"      "*"        "*"       
3  ( 8 )  " "   "*"       "*"      " "        "*"       
3  ( 9 )  " "   "*"       "*"      "*"        " "       
3  ( 10 ) " "   "*"       " "      "*"        "*"       
4  ( 1 )  "*"   " "       "*"      "*"        "*"       
4  ( 2 )  "*"   "*"       "*"      " "        "*"       
4  ( 3 )  "*"   "*"       "*"      "*"        " "       
4  ( 4 )  "*"   "*"       " "      "*"        "*"       
4  ( 5 )  " "   "*"       "*"      "*"        "*"       
5  ( 1 )  "*"   "*"       "*"      "*"        "*"       
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2 p = 25 = 32

library(leaps) # Load leaps package

# Run best subsets regression and keep the nbest models
leaps<-regsubsets(sauGPA ~ hsGPA + athlete + ACTscore + hoursSTUDY + gender, data=gpa, nbest=10, nvmax=32)

summary(leaps) # View results
plot(leaps,scale="r2") # Creates the black-box plot displayed below

# Creates the plot at the top of the next page
library(car)
#subsets(leaps, statistic="adjr2")

https://onlinecourses.science.psu.edu/stat501/node/330


Notice that I chose adjusted 
R-squared as my criterion to  
compare models. 

From all of this, which model 
would you choose? 

 
32. Suppose we ultimately decide to make predictions with the model that includes HSGPA, ACT scores, and gender: 

The R-squared and AIC values tell us how well this model fits the data we used to estimate the coefficients, but how 
accurate would this model be for new data? 

The data we used were from first-year students in 2013.  Suppose I gathered high school GPAs, ACT scores, and 
gender for this year’s first-year students.  I could then predict the Fall GPAs of these students using our model. 

On the 2013 data, our model had an R-squared value of 0.5072.  If we fit our model to this year’s data, would you 
expect the R-squared value to be greater than, less than, or equal to 0.5072?  Explain. 

33. Using the following visualization as a guide, explain the bias-variance trade-off: 
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ŷ = −0.6416 + 0.7051 hsGPA( )+ 0.0480 ACTscore( )− 0.2753 male( )

Bias-Variance Tradeoff 

High Bias - Low Variance Low Bias - High Variance 

�overfitting� - modeling the 
random component 



34. Because our models will have the tendency to overfit our sample data (and not generalize to other datasets), we 
might want to split our data before fitting our models. 

One way to do this is to split our data into training and testing subsets.  The training dataset would be a random 
sample of most of the observations in our data.  We’d use this train (fit) our models and select the best model.  We 
could then test our model on the testing data.  Since the testing data is “new” to our model, it would give us a 
sense of how well our model generalizes beyond our sample data. 

If splitting our data once is a good idea, why don’t we split our data multiple times?  Rather than taking multiple 
random samples (which could use the same observation multiple times), we could use k-fold cross validation.  To 
use this method, we would: 

 • Randomly divide the data into k pieces (let’s say k = 10) 
 • Use k-1 of those pieces (90% of the data; called the training set) to estimate the model coefficients 
 • Compute prediction error on the remaining piece (10% of the data; called the test set) 
 • Do this for each piece (10% of the data) 
 • Average the k (10) prediction error estimates.  This gives us the predictive accuracy of the model. 
 • Repeat this process for other competing models.  Whichever gives the smallest mean error is the “best” 
 • Estimate coefficients for that “best” model using all of the data 

Let’s see this process work on the small dataset pictured to the left. 
We randomly split the data into 3 pieces (red, blue, and green dots) 

Below (left): Model fit to the green and blue dots; error measured with red dots 

Below (middle): Model fit to red and blue dots; error measured with green dots 

Below (right): Model fit to red and green dots; error measured with blue dots 

We then take the average of those mean square errors. 
We’d repeat this process with different models (other predictor variables) and 
choose the model that produces the smallest average mean square error. 

Average cross-validated mean square error: Model  
 0.281 GPA = f(hsGPA + athlete + ACTscore + hoursSTUDY + gender) 
 0.280 GPA = f(hsGPA +               + ACTscore + hoursSTUDY + gender) 
 0.283 GPA = f(hsGPA +               + ACTscore +                         + gender) 
 0.297 GPA = f(hsGPA +               + ACTscore                                              ) 
 0.311 GPA = f(hsGPA +                                                                                  ) 
 0.337 GPA = f(full model including all possible interaction terms) 

From this process (and the 6 models displayed above), what model would we choose as “best”? 
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k-fold Cross 
Validation

x

y

Randomly break the dataset into k 
partitions (in our example we’ll have k=3 
partitions colored Red Green and Blue)
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k-fold Cross 
Validation

x

y

Randomly break the dataset into k 
partitions (in our example we’ll have k=3 
partitions colored Red Green and Blue)

For the red partition: Train on all the 
points not in the red partition. Find 
the test-set sum of errors on the red 
points.
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k-fold Cross 
Validation

x

y

Randomly break the dataset into k 
partitions (in our example we’ll have k=3 
partitions colored Red Green and Blue)

For the red partition: Train on all the 
points not in the red partition. Find 
the test-set sum of errors on the red 
points.

For the green partition: Train on all the 
points not in the green partition. 
Find the test-set sum of errors on 
the green points.
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k-fold Cross 
Validation

x

y

Randomly break the dataset into k 
partitions (in our example we’ll have k=3 
partitions colored Red Green and Blue)

For the red partition: Train on all the 
points not in the red partition. Find 
the test-set sum of errors on the red 
points.

For the green partition: Train on all the 
points not in the green partition. 
Find the test-set sum of errors on 
the green points.

For the blue partition: Train on all the 
points not in the blue partition. Find 
the test-set sum of errors on the 
blue points.

library(DAAG) # Load DAAG library for cross-validation
cross.validated.model <- lm(sauGPA ~ hsGPA + athlete + ACTscore + hoursSTUDY + gender, data=gpa)
CVlm(gpa, cross.validated.model, m=10)

http://www.autonlab.org/tutorials/overfit10.pdf


35. With forward-selection, backwards-selection, best-subsets regression, and cross-validation, our model selection is 
a discrete process:  each predictor is either in or out of the model.  These discrete processes can have high 
variance.  A different set of data could lead to a completely different model with completely different predictors. 

Ridge regression (Tikhonov regularization) is a method that allows each predictor to be partly included in models.   

Recall our least squares criterion.  We estimate parameters in a regression model to minimize: 

Ridge regression is similar, except coefficients are estimated to minimize: 

where λ is a tuning parameter. 

As you can see, the criterion for ridge regression contains two components.  As with ordinary least squares 
regression, ridge regression seeks coefficients that fit the data well (by minimizing the first component: SSE) 

The second term, called a shrinking penalty, is smaller when the coefficient estimates are close to zero, so it has the 
effect of shrinking the coefficient estimates towards zero. 

The tuning parameter λ controls the relative impact of these two components on the coefficient estimates.  When  
λ=0, the penalty term has no effect and ridge regression will yield the least squares estimates.  When λ is very 
large, the coefficient estimates will approach zero.  Choosing an appropriate value for λ is very important (and, 
unfortunately, won’t be covered in this course). 

While we want to shrink the coefficient estimates, we’re typically not interested in shrinking the intercept (which is 
simply the mean value of our dependent variable when all predictor variables equal zero).  For this reason, we 
typically center our data before performing ridge regression by taking each predictor and subtracting its mean. 

Let’s fit all our predictors, including both HSGPA and HSrank, on a data.frame that has been centered: 

The output is displayed on the next page. 
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# Center our predictors
gpa.centered <- gpa # Copy our data.frame to gpa.centered
gpa.centered$athlete <- as.numeric(gpa.centered$athlete)   # Convert all to numeric variables
gpa.centered$gender <- as.numeric(gpa.centered$gender)-1   # -1 to make gender a 0/1 variable
gpa.centered <- data.frame(scale(gpa.centered, center = TRUE, scale = FALSE))  # Center but not z-scores

# Find least squares estimates of coefficients 
coef(lm(sauGPA ~ hsGPA + hsRANK + athlete + ACTscore + hoursSTUDY + gender, data=gpa.centered))

# Run ridge regression with lambda between 0 and 50 
library(MASS) # Load MASS package
ridge <- lm.ridge(sauGPA ~ hsGPA + hsRANK + athlete + ACTscore + hoursSTUDY + gender, data=gpa.centered, 

   lambda = seq(0, 50, .1))

# Find the “best” value of lambda 
select(lm.ridge(sauGPA ~ hsGPA + hsRANK + athlete + ACTscore + hoursSTUDY + gender, 
                  data=gpa.centered, lambda = seq(0, 50, .01)))

# Get ridge regression coefficient estimates using lambda = 6.43 
lm.ridge(sauGPA ~ hsGPA + hsRANK + athlete + ACTscore + hoursSTUDY + gender, data=gpa.centered, 
         lambda = 6.43)

# Plot ridge regression coefficients for various lambda values between 0-10 
library(genridge)  # Load genridge package
traceplot(ridge) # Plot coefficients
abline(v=6.43, lty=1, lw=3) # Add line at lambda = 6.43

http://en.wikipedia.org/wiki/Tikhonov_regularization


Below, I’ve pasted output using ridge regression.  I used a model that included both HS GPA and HS Rank to 
introduce collinearity.  Notice the smaller magnitude of the coefficients under the ridge regression method.  
Lambda was selected to be 6.43 to estimate the coefficients 

Linear Ridge
Regression Regression

Predictor Coefficient Coefficient
hsGPA +0.7510 +0.6622

hsRANK -0.0016 +0.0002
not athlete -0.0316 -0.0243

ACTscore +0.0436 +0.0432
hoursSTUDY +0.0093 +0.0093

male -0.2810 -0.2702

The plot shows the shrinkage of the coefficients as we increased lambda.  Note that we wouldn’t want to use the 
ridge regression coefficients (because they have bias).  We use ridge regression to determine if our coefficient 
estimates are stable as we increase bias.  If the estimates remain stable (like most in the plot displayed above), 
we have evidence that multicollinearity is not a problem. 

36. Unlike the discrete processes (e.g., forward-selection, best subsets) ridge regression does not allow us to remove 
any predictors from a model.  The penalty will shrink all coefficient estimates towards zero, but it won’t set them 
equal to zero (which would mean we could remove them from the model). 

The lasso (least absolute shrinkage and selection operator) not only shrinks estimates towards zero; it actually 
forces some coefficient estimates to be zero when λ is large. 

The lasso coefficients minimize the following criterion: 

Notice this is extremely similar to the ridge regression criterion, except penalty term uses absolute values of 
coefficients (rather than squared values). 
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Other investigations of our GPA dataset 

37. Let’s quickly investigate some other questions we can address with our data.  Determine what models we could fit 
to address each question.  Then, we can use our data in-class to attempt to answer each question. 

 a) How well do ACT scores predict first-semester GPAs at St. Ambrose? 

Full model:  ______________________________________ Reduced model:  ____________________________________ 

How could we attempt to answer the question? 

 b) Do ACT add to our prediction of SAU GPAs beyond what high school GPAs predict? 

Full model:  ______________________________________ Reduced model:  ____________________________________ 

How could we attempt to answer the question? 

 c) Do the self-reported hours studying per week predict SAU GPAs beyond ACT and high school GPA? 

Full model:  ______________________________________ Reduced model:  ____________________________________ 

How could we attempt to answer the question? 

�21



38. The final question is: Do student athletes have higher or lower SAU GPAs? 

To address this question, we could conduct a t-test (or randomization-based test of the two groups): 

Two Sample t-test
data:  sauGPA by athlete

sample estimates: athlete mean = 2.501573 not athlete mean = 2.729

alternative hypothesis: true difference in means is not equal to 0
t = -2.3323, df = 253, p-value = 0.02047

95 percent confidence interval:  -0.41952830 -0.03539793

From this, what would we conclude? 

 

39. We could also address this question by comparing: 

How does this compare to the t-test? 

40. As we’ll soon see, the t-test (and ANOVA) are simply special cases of linear regression.  Regression allows us, 
though, to develop and test more complex models.  For example, we have already concluded that athletes have 
lower GPAs than non-athletes.  Would this difference hold if we controlled for ACT scores?  In other words, if we 
have two students with the same ACT score, does being an athlete have an association with a lower GPA.  To test 
this, we could compare: 

What conclusions can we make?  Do athletes have lower first-semester GPAs? 
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Full:  ŷ = b0 + b1 athlete( )
Reduced:  ŷ = b0

F =
0.02105 − 0( ) / 1− 0( )

1− 0.02105( ) / 255 −1−1( ) = 5.44  p = 0.02047( )

Full:  ŷ = b0 + b1 ACTscore( )+ b2 athlete( )
Reduced:  ŷ = b0 + b1 ACTscore( )

F =
0.2955 − 0.2875( ) / 2 −1( )
1− 0.2955( ) / 255 − 2 −1( ) = 2.8587  p = 0.09212( )


