
Activity #12:  More regression topics:  Polynomial, robust, quantile regression; lowess; ANOVA as regression 

Scenario: 31 counts (over a 30-second period of time) were recorded from a Geiger counter at a nuclear plant: 
  

 Time Count (above background radiation levels) 
0 126.6
1 101.8
2  71.6
…   …
30  19.3
=============

Mean = 15 43.745 N = 31
SD = 9.09 29.308 r = -0.877

1. Based on the correlation (or the R-squared value of 0.7687), we might feel satisfied that a linear model adequately 
fits this data (predicting counts as a function of time).  Based on the following residual plots, evaluate the conditions 
for a linear regression model: 

2. Even though the correlation is strong, the data clearly indicate a nonlinear relationship between counts and time.  
To get a sense of the shape of our scatterplot, we can use locally weighted scatterplot smoothing (LOWESS).  
LOWESS connects a series of curves that are fit to small (local) subsets of the data (defined by the bandwidth/span). 

To see an animation of LOWESS in action, go to:  http://bradthiessen.com/html5/stats/m301/lowess.gif 

 Bandwidth = 0.1 Bandwidth = 0.3 Bandwidth = 1.0 

Model:  count = b0 + b1(time) 
Least-squares line:  y = 86.14 – 2.826x 
R2 = 0.7687 
RMSE = 14.34 
AIC = 256.996 
F = 96.397 (p = 9.991e-11)

http://bradthiessen.com/html5/stats/m301/lowess.gif


3. That LOWESS curve reinforces the idea that our data do not have a linear relationship. 

What can we do when our data appear to have a “curved” relationship?  Believe it or not, we can still use linear 
regression.  Linear regression can include “lines” that have curved shapes. 

One way to do this is to include polynomial terms in our regression model.  In this Geiger counter example, we 
could try to fit the following models: 

Each of those are considered to be linear models?  Why?  If you take the partial derivative of your model and the 
result no longer includes the unknown coefficients, then the model is considered to be linear.  If, on the other hand, 
the partial derivative results in a function that still includes the unknown coefficients, then the model is considered 
to be nonlinear.  Let’s take a look at the partial derivative of the model with the cubic term: 

These partial derivatives are no longer functions of the coefficients (b values), so this is a linear model (a linear 
combination of predictor variables). 

 
We can fit the models with the quadratic and cubic terms and compare them to the null model with no predictors: 

 

Linear model:  ŷ = b0 + b1 time( )
Model with quadratic term:  ŷ = b0 + b1 time( )+ b2 time( )2

Model with cubic term:  ŷ = b0 + b1 time( )+ b2 time( )2 + b3 time( )3

dy
db0

= 1     dy
db1

= x     dy
db2

= x2      dy
db3

= x3      

Model:  y = b0 + b1(time) + b2(time)2 
Formula:  y = 108 – 7.34x + 0.15x2 
R2 = 0.9079 
AIC = 230.44 
RMSE = 9.205 

Compared to null model: 
F = 138.1 (p = 3.143e-15)

Model:  y = b0 + b1(time) + b2(time)2 + b3(time)3 
Formula:  y = 113.3 – 9.65x + 0.35x2 – 0.004x3 
R2 = 0.915 
AIC = 229.97 
RMSE = 9.007 

Compared to null model: 
F = 96.88 (p = 1.442e-14)

Model:  count = b0 + b1(time) 
Formula:  y = 86.1 – 2.83x 
R2 = 0.7687 
AIC = 256.99 
RMSE = 14.34 

Compared to null model: 
F = 96.397 (p = 9.991e-11)

lin.mod <- lm(counts ~ time, data=geiger) # Fit the linear model with one predictor
quad.mod <- lm(counts ~ time + I(time^2), data=geiger) # Include quadratic term
cub.mod <- lm(counts ~ time + I(time^2) + I(time^3), data=geiger) # Include cubic term



4. We can compare these three models by examining the AIC values or with the omnibus F-test.  Verify the calculations 
and interpret.  From this, which model would you conclude fits the data the best? 

Analysis of Variance Table

Model 1: counts ~ 1
Model 2: counts ~ time
Model 3: counts ~ time + I(time^2)
Model 4: counts ~ time + I(time^2) + I(time^3)

  Res.Df     RSS Df Sum of Sq       F    Pr(>F)    
1     30 25769.0                                   
2     29  5959.5  1   19809.5 244.176 4.763e-15
3     28  2372.4  1    3587.1  44.215 3.897e-07
4     27  2190.5  1     182.0   2.243    0.1458    

5. The R-squared values increased as we added higher-powered terms to our model.  Does adding higher-powered 
terms always increase the fit of a model to a dataset?  Explain. 

6.  Let’s fit a model that includes all terms up to the 7th power: 

If we compare it to the model with the quadratic term, we find: 

Analysis of Variance Table

Model 1: counts ~ time + I(time^2)
Model 2: counts ~ time + I(time^2) + I(time^3) + … + I(time^6) + I(time^7)

  Res.Df    RSS Df Sum of Sq      F Pr(>F)
1     28 2372.4                           
2     23 1767.2  5    605.22 1.5754 0.2066

From this, what can we conclude? 

Formula:  y = 124 – 31.6x + 9.9x2 – 1.7x3  + 0.15x4  – 0.007x5  + 0.00017x6  – 0.0000016x7 
R2 = 0.9314 
RMSE = 9.007 
AIC = 231.3124



7.  Just like in the last activity, we can use cross-validation to help choose the best model: 

Average cross-validated mean square error: Model  
 888 null model 
 219 count = f(time) 
 103 count = f(time + time2) 
 105 count = f(time + time2 + time3) 
 110 count = f(time + time2 + time3 + time4) 

From this, what can we conclude? 

8. As another quick example, we can investigate the speed and stopping distance of 50 cars.  I fit models including 
linear, quadratic, and cubic terms and then tested each model in order: 

Analysis of Variance Table

Model 1: dist ~ 1
Model 2: dist ~ speed
Model 3: dist ~ speed + I(speed^2)
Model 4: dist ~ speed + I(speed^2) + I(speed^3)

  Res.Df   RSS Df Sum of Sq       F    Pr(>F)    
1     49 32539                                   
2     48 11354  1   21185.5 91.6398 1.601e-12
3     47 10825  1     528.8  2.2874    0.1373    
4     46 10634  1     190.4  0.8234    0.3689    

Which model would you choose to describe this data? 

9. Finally, remember we predicted the prestige of occupations based on their income levels.   Based on the AIC values 
cross-validation output, which model would you choose? 

Model 1: prestige ~ 1
Model 2: prestige ~ income
Model 3: prestige ~ income + I(income^2)
Model 4: prestige ~ income + I(income^2) + I(income^3)

Model 1: AIC = 873
Model 2: AIC = 802
Model 3: AIC = 784
Model 4: AIC = 786

Average cross-validated mean square error: Model  
 154 prestige = f(income) 
 130 prestige = f(income + income2) 
 131 prestige = f(income + income2 + income3) 
 134 prestige = f(income + income2 + income3 + income4) 



10. So far, we’ve evaluated the conditions (assumptions) necessary to fit linear models, but we haven’t really 
investigated what we can do if those conditions are not met. 

If our residuals do not approximate a normal distribution, we might choose to transform our variables.   
If our linearity assumption is violated, we might turn to a polynomial (or nonlinear) regression model.   

What do we do if we have concerns about the homogeneity of variances assumption or if our data have a few 
influential outliers? 

We might choose to conduct a robust regression, using one of two methods: 
 • Regression with robust standard errors (when we’re concerned about homoscedasticity or normal residuals) 
 • Robust estimation of coefficients and standard errors (when we have influential outliers) 

Let’s investigate the use of bootstrap methods for robust regression.  With a bootstrap residuals approach, we: 

a) Estimate regression coefficients from the data: 

b) Calculate predicted values        and residuals for each observation 

c) Take all n residuals and select a sample of n of them with replacement (the bootstrap sample). 

d) Using those sampled residuals, calculate new Y values 

e) Now run a regression using your original x variable and the new y* variable values 

f) Repeat steps c-e many times (say, 10,000 times) 

Now that we have 10,000 estimates of our regression coefficients, we can estimate their standard errors by simply 
calculating the standard deviation of all our coefficient estimates.  Likewise, we can find the lowest and highest 
2.5% of the coefficient estimates to estimate a 95% confidence interval for each. 

To read about this technique, check out either of the following:  
 http://socserv.mcmaster.ca/jfox/Books/Companion/appendix/Appendix-Bootstrapping.pdf 
 http://www.sagepub.com/upm-data/21122_Chapter_21.pdf 

Let’s try this out on our prestige data.  We’ll model prestige as a function of income, education, and %women: 

 Linear Model  Bootstrap Method 
 Coefficient Standard Error Coefficient Standard Error  

(intercept) -6.794334  3.239089 -6.804227 3.146723 
Income  0.001314 0.000278 0.001317 0.000274 
Education  4.186637 0.388701 4.188170 0.379537 
%women -0.008905 0.030407 -0.009071 0.029862 

Notice the bootstrap coefficients are slightly biased (compared to our original model) and the standard errors 
differ.  What’s the consequence of having different values for these standard errors? 

ŷ = b0 + b1x1 + ...

ŷ( ) e = ŷ − y( )

y* = ŷ + e( )

http://socserv.mcmaster.ca/jfox/Books/Companion/appendix/Appendix-Bootstrapping.pdf
http://www.sagepub.com/upm-data/21122_Chapter_21.pdf


11. Let’s take a different approach to bootstrapping a regression.  We’ll 
start with a fictitious dataset that has a clear outlier.  When we fit a 
linear model to the data, we get what’s pictured to the right. 

That outlier on the bottom-right obviously had a significant 
impact on our estimates of the regression coefficients.  To 
mitigate the effect of that outlier, we could choose to: 
  
a) Take a random sample of n observations with replacement 

from our data. 
b) Estimate the regression coefficients for this bootstrap 

sample. 
c) Repeat this process many times to end up with lots of 

estimated coefficients 
d) Use the mean (or median) of those bootstrap coefficients 

The bootstrap regression line is pictured to the right.  While it’s 
still not a great fit, it’s markedly better than the original.   

Let’s see how this bootstrap cases approach works on our prestige dataset.  Below, I’ve pasted the coefficients 
using ordinary least squares and using the bootstrap method.  Once again, notice that the coefficients and 
standard errors differ slightly.  

 Linear Model  Bootstrap Method 
 Coefficient Standard Error Coefficient Standard Error  

(intercept) -6.794334  3.239089 -6.715968 3.227395 
Income  0.001314 0.000278 0.001423 0.000445 
Education  4.186637 0.388701 4.100725 0.472782 
%women -0.008905 0.030407 -0.003743 0.037316 

What assumptions did we make with the ordinary least squares regression?  What assumptions did we make using 
the bootstrap method? 



12. The scatterplot shows math achievement is associated with socioeconomic status.  We can fit a linear model: 

From this, what can we say 
about the relationship between 
SES and math achievement?   

Keep in mind our variables are 
standardized (z-scores). 

13. In fitting that line through the scatterplot, we assume the relationship between X and Y is the same across all values 
of Y.  In other words, we assume a 1 standard deviation increase in SES is associated with a 0.36 standard deviation 
increase in math achievement for all students (regardless of how high or low the students math achievement is). 

Might we expect SES to have more or less of an impact on extremely low- or high-achieving students?  Maybe.   
To investigate this, we can use quantile regression.   

Recall the median is the 2-quantile (50th percentile).  We could run a quantile regression for the 50th percentile. 

Interpret the coefficients of 
this quantile regression line. 

Scenario: The National Center for Education Statistics (NCES) is mandated to "collect and disseminate statistics 
and other data related to education in the United States.”  To this end, it has initiated several large 
scale studies in which a cohort is studied at regular intervals over several years.  The High School and 
Beyond (HSB) study tracked achievement and social aspects of the 1980 sophomore & senior classes. 

 Our dataset contains the following variables for 7,185 students from 160 different high schools: 
  • schid:  school ID number 
  • minority:  0 = no; 1 = yes 
  • female:  0 = no; 1 = yes 
  • ses:   socioeconomic status of the student (z-score) 
  • mathach:  math achievement score (z-score) 
  • size:  number of students in school 
  • schtype:  school type (0 = public; 1 = private) 
  • meanses: socioeconomic status of the school 

 We’ll focus on mathach as our outcome variable.  

 Data: http://www.bradthiessen.com/html5/data/hsb.csv

Model:  mathach = b0 + b1(ses) 
Formula:  y =0 + 0.361x 
R2 = 0.13 
RMSE = 0.933 
AIC = 19393.35 
Comparison to null model: 
F = 1075 (p < 2e-16)

Linear Regression 
Model:  mathach = b0 + b1(ses) 
Formula:  y =0 + 0.361x

Quantile Regression for median 
Model:  median(mathach) = b0 + b1(ses) 
Formula:  y =0.0295 + 0.4454x

http://www.bradthiessen.com/html5/data/hsb.csv


14. Median regression can be useful (especially when dealing with outliers), but we’re more interested in determining 
if the relationship between SES and math achievement differ across levels of math achievement. 

To investigate this, we can run a quantile regression for as many quantiles as we want (e.g., the 10th, 20th, 30th, …, 
80th, and 90th percentiles). 

Rather than listing out the coefficients for all 9 regression model, we can display the magnitude of the coefficients 
across each of the 10 deciles. 

The red line shows the coefficients for 
our simple linear regression model 
(along with confidence bands).  The 
black lines show the coefficient 
estimate across different percentiles of 
math achievement (along with grey 
confidence bands).  From this, what can 
we conclude about the relationship 
between SES and math achievement? 

15. We can also display these quantile regression lines on the 
scatterplot.  To the right, I’ve plotted the regression lines for the 
10th, 30th, 50th, 70th, and 90th percentiles of math achievement.  
Do these results match the graphs displayed above? 

16. It appears as though the relationship between math achievement and SES is strongest at the median math score 
(where it has the largest slope of 0.4454).  At the 25th percentile, the slope is only 0.4058. 

Is there a statistically significant difference between those two slopes?  Let’s compare regression models: 

Quantile Regression Analysis of Deviance Table

Model: scale(mathach) ~ scale(ses)
Joint Test of Equality of Slopes: tau in {  0.25 0.5  }

  Df Resid Df F value Pr(>F)   
1  1    14369    7.45 0.0064 **

What can we conclude from this? 



17. We’ve investigated the math achievement gap associated with differences in socioeconomic status.  Does the 
achievement gap for minority students also differ across levels of math achievement?  Interpret the output. 

18. We can include both predictors (SES and minority) and run a multiple quantile regression analysis.  Interpret. 



19. The ANOVA summary table indicates at least one of the group means differs from the others.  When we conducted 
the ANOVA, we constructed the following model:               . 

That model is similar to many of the linear regression models we’ve constructed: 

Take a look at the original data columns below to see the data was used to generate the ANOVA summary table.   
Notice our independent variable (condition) is coded as a nominal (character) variable. 

To conduct a regression analysis on this data, we’ll need to convert the condition variable into a numerical variable.  
The possible coding column shows one way to do this.  We could let 1 = after, 2 = before, and 3 = none.  Since the 
values aren’t meaningful, we could use any numbers (such as 0 = none, 12 = before, 4.3 = after). 

Using the possible coding listed in the table, I fit the model 

The output is displayed at the top of the next page. 

Scenario: Recall the ambiguous prose data we used to introduce ANOVA (in lesson #3): 

Group Count Mean Std. Dev. 
None 19 3.368 1.25656 
Before 19 4.947 1.31122 
After 19 3.211 1.39758 
Total 57        M = 3.842     s = 1.52115 

Data: http://www.math.hope.edu/isi/data/chap9/Comprehension.txt 
Applet:  http://www.rossmanchance.com/applets/AnovaShuffle.htm?hideExtras=2  

Source of example:  Introduction to Statistical Investigations — http://math.hope.edu/isi/ 
Actual Study:  http://memlab.yale.edu/sites/default/files/files/1972_Bransford_Johnson_JVLVB.pdf
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hypothesis, say at the 5% level, we are “done,” in that we will conclude that the long-run means 
do not differ. By constructing a statistic that compares all sample averages at once, we can 
perform just one test and thus we can keep the probability of a Type I Error as small as we 
want. So we want to develop a new procedure… 
 
 
Example 9.1: Comprehending Ambiguous Prose 
 
Sometimes when reading esoteric prose we have a hard time comprehending what the author is 
trying to convey. A student project group decided to partially replicate part of a seminal 1972 
study by Bransford and Johnson on memory encoding (“Contextual prerequisites for 
understanding: Some investigations of comprehension and recall,” Journal of Verbal Learning 
and Verbal Behavior, 11, pp. 717-726).   The study examined college students’ comprehension 
of following ambiguous prose passage. 

If the balloons popped, the sound wouldn’t be able to carry since everything would be too far 
away from the correct floor. A closed window would also prevent the sound from carrying, since 
most buildings tend to be well insulated. Since the whole operation depends on a steady flow of 
electricity, a break in the middle of the wire would also cause problems. Of course, the fellow 
could shout, but the human voice is not loud enough to carry that far. An additional problem is 
that a string could break on the instrument. Then there could be no accompaniment to the 
message. It is clear that the best situation would involve less distance. Then there would be fewer 
potential problems. With face to face contact, the least number of things could go wrong. (p. 719) 

Did you understand what the passage was describing?  Would it help to have a picture?  The 
picture that goes along with the passage is shown in Figure 9.1. 

Figure 9.1: Does this picture help explain the previous passage?  

  

Source SS df MS MSR (F)

Treatment 35.053 2 17.5263 10.012

Error 94.526 54 1.7505 p = 0.0002

Total 129.579 56 MStotal η2 = 0.2705

yij = µ +α j + ei ,  where α j = µ j − µ

yi = b0 + b1x1 + ei

Original data Possible coding Dummy coding

Subject y = score Condition
Condition 

Code
After 

x1
Before 

x2
None 

x3
1 6 After 1 1 0 0
2 5 After 1 1 0 0
… … … … … … …
20 7 Before 2 0 1 0
21 5 Before 2 0 1 0
… … … … … … …
39 4 None 3 0 0 1
40 6 None 3 0 0 1
… … … … … … …

yi = b0 + b1 condition code( )+ ei

http://www.math.hope.edu/isi/data/chap9/Comprehension.txt
http://www.rossmanchance.com/applets/AnovaShuffle.htm?hideExtras=2
http://math.hope.edu/isi/
http://memlab.yale.edu/sites/default/files/files/1972_Bransford_Johnson_JVLVB.pdf


Interpret the slope coefficient.  Then, explain why this coding scheme is a bad idea. 

20. If we want to include a categorical predictor in our regression model, we’ll need to convert that categorical 
predictor to a factor variable (or series of dummy variables). 

Dummy variables take values of 0 or 1 to indicate the absence or presence of a categorical effect.   
In this example, we could convert the 3 condition groups into 3 dummy variables: 

 • Dummy variable #1 = 1 if the condition is after (and equals zero for the before and none categories) 
 • Dummy variable #2 = 1 if the condition is before (and equals zero for the after and none categories) 
 • Dummy variable #3 = 1 if the condition is none (and equals zero for the before and after categories) 

These dummy variables are displayed in the table on the previous page.   

If we enter these dummy variables and fit our regression model (    ), we get: 

Coefficients: (1 not defined because of singularities)
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   3.3684     0.3035  11.097 1.51e-15
x1           -0.1579     0.4293  -0.368 0.714436    
x2            1.5789     0.4293   3.678 0.000542
x3                NA         NA      NA       NA    

Why did we get an error message? 

21. Including all 3 dummy variables gives us a perfect collinearity problem.  All the information we need about the 
condition groups is contained within the first 2 dummy variables: 

 • x1 = 1 if the condition is after (and equals zero for the before and none categories) 
 • x2 = 1 if the condition is before (and equals zero for the after and none categories) 

To demonstrate this, identify the condition (after, before, or none) for each of the following: 

 x1 x2 Condition 
 1 0 __________________ 

 0 1 __________________ 

 0 0 __________________ 

Model:  comprehension = b0 + b1(condition code) 
Formula:  y = 3.68421 + 0.07895x 
R2 = 0.001828 
RMSE = 1.534 
F = 0.1007 (p = 0.7522)

ŷ = b0 + b1x1 + b2x2 + b3x3



22. Let’s run our regression again, this time using only the first two dummy variables:                                        
Interpret this output.  What do the coefficients represent? 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   3.3684     0.3035  11.097 1.51e-15
x1           -0.1579     0.4293  -0.368 0.714436    
x2            1.5789     0.4293   3.678 0.000542
---

Residual standard error: 1.323 on 54 degrees of freedom
Multiple R-squared:  0.2705, Adjusted R-squared:  0.2435 
F-statistic: 10.01 on 2 and 54 DF,  p-value: 0.0002002

23. The ANOVA summary table for this regression model (using dummy variables) corresponds with the ANOVA 
summary table we calculated in way back in lesson #3. 

24. We can also conduct an AxB ANOVA as a regression analysis.  
To demonstrate, let’s use the guinea pig tooth growth data we 
may have investigated back in the first unit. 

This study investigated tooth growth in guinea pigs as a 
function of the type and dose of vitamin C.  Guinea pigs were 
given a low, medium, or high dose of vitamin C either through 
orange juice (OJ) or a vitamin C supplement (VC). 

Here’s a quick summary of our data: 

  supp dose  n  mean       sd
1   OJ  0.5 10 13.23 4.459709
2   OJ    1 10 22.70 3.910953
3   OJ    2 10 26.06 2.655058
4   VC  0.5 10  7.98 2.746634
5   VC    1 10 16.77 2.515309
6   VC    2 10 26.14 4.797731

ŷ = b0 + b1x1 + b2x2

Original ANOVA summary table

Source SS df MS MSR (F)

Treatment 35.053 2 17.5263 10.012

Error 94.526 54 1.7505 p = 0.0002

Total 129.579 56 MStotal η2 = 0.2705

Regression Analysis
Source SS df MS MSR (F)

model 35.053 2 17.5263 10.012 p=0.002

x1 11.369 1 11.369 6.494 p=0.014

x2 23.684 1 23.684 13.530 p=0.001

Error 94.526 54 1.7505

Total 129.579 56 MStotal



We can convert our dose and supplement variables into dummy variables: 

We can then fit a linear model, including the interaction terms. 

Fitting the model results in the following parameter estimates: 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept)    13.230      1.148  11.521 3.60e-16
suppVC         -5.250      1.624  -3.233  0.00209 
dose1           9.470      1.624   5.831 3.18e-07 
dose2          12.830      1.624   7.900 1.43e-10 
suppVC:dose1   -0.680      2.297  -0.296  0.76831    
suppVC:dose2    5.330      2.297   2.321  0.02411  

Interpret this output. 

25. Compare the AxB ANOVA summary table with the ANOVA summary table from this regression analysis. 

Original data Dummy coding

Guinea 
Pig

y =  
tooth growth Supplement Dose Supp.Code Dose1 Dose2

1 4.2 OJ Low 0 1 0
2 11.5 OJ Medium 0 0 1
3 7.3 OJ High 0 0 0
4 5.8 VC Low 1 1 0
5 6.4 VC Medium 1 0 1
6 10.0 VC High 1 0 0
… … … … … … …

AxB ANOVA
Source SS df MS MSR (F)

supplement 205.4 1 205.4 15.572 p=0.0002

dose 2426.4 2 1213.2 92.000 p<0.00001

interaction 108.3 2 54.2 4.107 0.02186

Error 712.1 54 13.2

Total 3452.2 59 MStotal

Regression
Source SS df MS MSR (F)

supplement 205.4 1 205.4 15.572 p=0.0002

dose 2426.4 2 1213.2 92.000 p<0.00001

supp:dose 108.3 2 54.2 4.107 0.02186

Error 712.1 54 13.2

Total 3452.2 59 MStotal

ŷ = b0 + b1 supp.code( )+ b2 doselow( )+ b3 dosemed( )+ b4 supp.code( ) doselow( )+ b5 supp.code( ) dosemed( )


